

Premise NSW Pty Ltd
62 075 657 359
154 Peisley St, Orange NSW 2800
PO Box 1963, Orange NSW 2800
02 6393 5000
orange@premise.com.au
premise.com.au

Our Ref: 217500_LET_007.docx

12 June 2019

Lithgow City Council PO Box 19, 180 Mort Street Lithgow NSW 2790

Attention: Nigel Campbell, Waste & Recycling Coordinator

ENVIRONMENTAL MONITORING OF LITHGOW SOLID WASTE FACILITY

Premise has completed scheduled groundwater and accumulated landfill gas monitoring at Lithgow Solid Waste Facility, located off Geordie Street, Lithgow on 7 May 2019. Leachate monitoring from point LW1 was unable to be conducted due to low volumes.

Groundwater Levels

Groundwater was gauged at six (6) groundwater monitoring wells across the site. Groundwater gauging data is included in **Table 1** (attached), and elevation trends are shown on **Figure 1**. No groundwater was recorded in monitoring stations MB1, MB6, MB11 and MB13. Observations were as follows:

- Depths to groundwater ranged from 3.20 metres below ground level (mbgl) at MB14, to 13.48 mbgl at MB9. Corrected groundwater elevations ranged from 897.37 metres Australian Height Datum (mAHD) at MB14, to 933.73 mAHD at MB6B.
- Inference of groundwater elevations, calculated from available survey data from installed groundwater monitoring wells indicate a flow direction to the south-west.

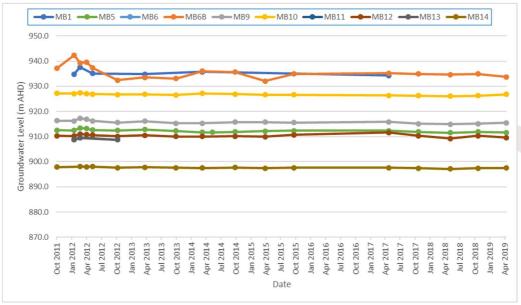


Figure 1: Lithgow Solid Waste Facility – Groundwater Elevations

Groundwater Quality

Groundwater samples were able to be collected from wells MB5, MB9, MB10, MB12 and MB14. The monitoring well casing at location MB6B had become bent at approximately 2.0 mbgl and sampling equipment was unable to be inserted beyond this depth. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Groundwater quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH ranged from 5.1 at MB12 to 7.1 at MB14. pH of groundwater at MB12 was below the guideline range considered suitable for pumping, irrigation and stock watering (6.0 to 8.5 pH units).
- Electrical conductivity (EC) ranged from 240 μ S/cm at piezometer MB10 to 1,200 μ S/cm at piezometer MB12.
- Total dissolved solids (TDS) ranged from 120 mg/L at MB10 to 680 mg/L at MB12. TDS concentrations were below the livestock watering 'loss of production' tolerance limit for the most susceptible livestock category, poultry (3,000 mg/L ANZECC & ARMCANZ, 2000).
- The chemical oxygen demand (COD) of groundwater samples ranged from below the laboratory limit of reporting (LOR) of 10 mg/L at MB10 and MB14, to 19 mg/L at MB12.
- Total alkalinity in groundwater ranged from 37 mg/L at MB12 to 310 mg/L at MB14. Alkalinity of groundwater was below the guideline hardness value for potential fouling of waters (350 mg/L).
- Groundwater chloride concentrations ranged from 24 mg/L at MB10 to 240 mg/L at MB12. All
 concentrations were below the guideline value for protection of moderately sensitive crops
 (350 mg/L).
- Fluoride concentrations in groundwater were all below the laboratory LOR of 0.1 mg/L. All concentrations were below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- Sulfate concentrations in groundwater ranged from 14 mg/L at MB10 to 97 mg/L at MB12.
- Calcium concentrations ranged from 12 mg/L at MB10 to 95 mg/L at MB14.
- Magnesium concentrations ranged from 8.8 mg/L at MB10 to 28 mg/L at MB14.
- Potassium concentrations ranged from 3.6 mg/L at MB10 to 44 mg/L at MB5.
- Concentrations of sodium ranged from 11 mg/L at MB10, to 89 mg/L at MB5. Sodium concentrations were below the guideline level for irrigation to moderately sensitive crops (<230 mg/L).
- Ammonia concentrations in groundwater ranged from 0.21 mgN/L at MB14 to 6.1 mgN/L at MB5.
- Nitrate concentrations ranged from below the laboratory LOR of 0.005 mgN/L at MB12 to 3.9 mgN/L at MB5.
- Phosphorus concentrations in groundwater ranged from below the laboratory LOR of 0.02 mg/L at MB12, to 0.11 mg/L at MB5. Phosphorus concentrations at MB5, MB9 and MB10 were above the guideline value of 0.05 mg/L for long term irrigation use (up to 100 years).

- Aluminium concentrations in groundwater were recorded at below the laboratory LOR of 5 μ g/L with the exception of MB12, which recorded a concentration of 890 μ g/L. Aluminium concentrations in groundwater were below the long-term (up to 100 years) irrigation guideline concentration of 5,000 μ g/L.
- Hexavalent chromium and total chromium concentrations were below the respective laboratory LORs of 4 μg/L and 1 μg/L. Concentrations of total chromium were lower than the long-term (up to 100 years) irrigation guideline concentration of 100 μg/L.
- Iron concentrations ranged from 44 μ g/L at MB5 to 40,000 μ g/L at MB12. Iron concentrations at MB6B, MB9, MB10, MB12 and MB14 exceeded the long-term (up to 100 years) irrigation guideline concentration of 200 μ g/L.
- Manganese concentrations ranged from 70 μ g/L at MB14 to 1,600 μ g/L at MB12. Manganese concentrations at locations MB5, MB9 and MB12 the long-term (up to 100 years) irrigation guideline concentration of 200 μ g/L.
- Total organic carbon (TOC) in groundwater ranged from 1.8 mg/L at MB10 to 5.2 mg/L at MB9.
- Total phenols were at or below the laboratory LOR of 0.01 mg/L at all groundwater monitoring points.
- Organochlorine pesticides and organophosphorus pesticides were below respective laboratory LORs at all groundwater monitoring points.
- Total petroleum hydrocarbons (TPH) and total recoverable hydrocarbons (TRH) were below respective laboratory LORs at all groundwater monitoring points for all fractions.

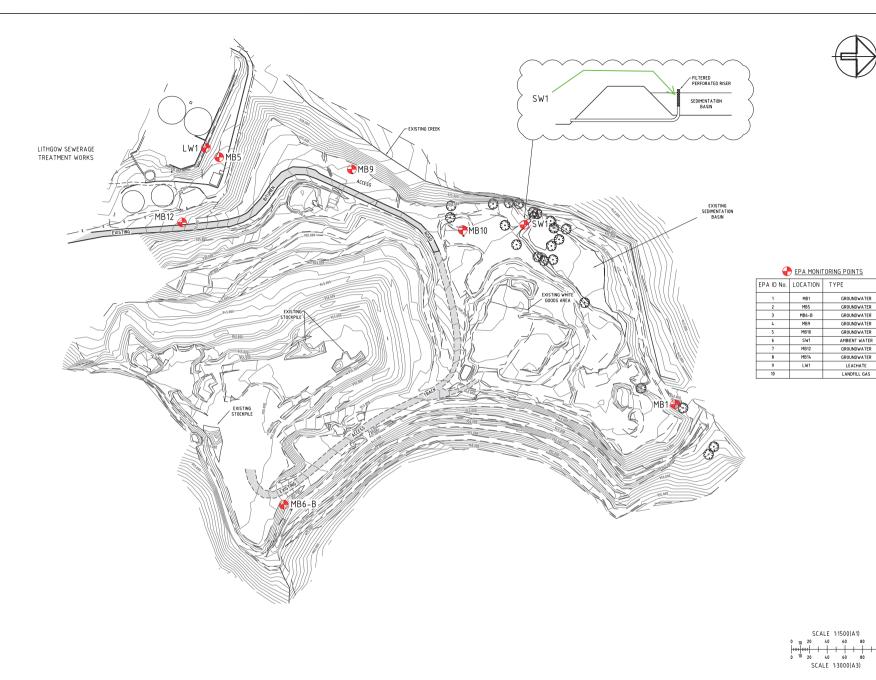
Accumulated Landfill Gas Monitoring

Gas concentrations in buildings and sheds within the required monitoring distance of 250 metres of filled areas were all below the respective threshold concentration of 1.25 % (v/v) during the monthly monitoring rounds conducted in January 2019 to May 2019. Results of gas monitoring are included in **Table 4** (attached)

The next routine monitoring for groundwater and leachate is scheduled for November 2019. Surface water monitoring is required to take place any calendar month when a surface water discharge is recorded. Please do not hesitate to contact us with any questions or comments you may have regarding this report.

Yours faithfully

Premise Australia Pty Ltd


BRENDAN STUART Environmental Scientist

No. of Attachments – 5: Environmental Monitoring Point Locations

Table 1 – Groundwater Level Measurements

Table 2 – Results of Laboratory Analyses (Groundwater) – May 2019

Table 3 – Accumulated Landfill Gas Monitoring SGS Laboratories Analytical Reports – May 2019

THIS PLAN IS PREPARED FROM A FIELD SURVEY FOR THE PURPOSE OF DESIGNING NEW CONSTRUCTIONS ON THE LAND AND SHOULD NOT BE USED FOR ANY OTHER PURPOSE.

VISIBLE SERVICES HAVE BEEN LOCATED ONLY. PRIOR TO ANY DEMOLITION, EXCAVATION OR CONSTRUCTION ON THE SITE, THE RELEVANT AUTHORITIES SHOULD BE CONTACTED FOR LOCATION OF FURTHER KNOPERGROUND SERVICES AND DETAILED LOCATIONS OF ALL SERVICES.

THESE NOTES ARE AN INTEGRAL PART OF THIS PLAN.

EXISTING TOP OF BANK

EXISTING ELECTRICITY

EXISTING VEGETATION

EXISTING ACCESS ROAD

◆ MB14

NOTES:

LEGEND:

No	DATE	CHECK	CHECK	DETAILS
Α	27/06/11	LP	AB	WORKING DRAFT
В	28/09/11	LP	AB	EPL VARIATION
$\overline{}$				

LITHGOW SOLID WASTE FACILITY LANDFILL ENVIRONMENTAL MANAGEMENT PLAN

FILE REFERENCE: 0.19rojacto/211091/04/1/05/Lithpon/21109_08_0701-0749 6vg

APPROVAL AUTHORITY

ENVIRONMENTAL PROTECTION AUTHORITY EPL: 6004

DRAWING
ENVIRONMENTAL MONITORING
POINTS
PROJECT 211109 DRAWING 01B FV04 REV.

PROJECT 211109 DRAMING 01B_EV04 REV. B

SOURCE: CRAVEN, ELLISTON & HAYES ILITHOOM PTY, LTD, IDRAMING NO. E448-10, DATED 19/191/29100

TABLE 1: LITHGOW SOLID WASTE FACILITY - GROUNDWATER LEVEL RESULTS

Ground Water Levels: 6-May-19

Piezometer Details:

	Ground Elev (mAHD)	Stickup (m)	Elevation Top PVC (mAHD)	Date	Measured (m)	GWL (mAHD)	Well Depth (m)	Well Base (mAHD)	Water Column (m)
MB1	939.790	0.86	940.650	6/05/2019	NMWL	-	6.5	934.15	nil
MB5	914.940	0.80	915.740	6/05/2019	4.05	911.69	9.8	905.94	5.75
MB6	945.820	0.85	946.670	6/05/2019	NMWL	-	-	-	nil
MB6B	946.290	0.75	947.040	6/05/2019	13.31	933.73	19.3	927.74	5.99
MB9	928.260	0.69	928.950	6/05/2019	13.48	915.47	17.1	911.85	3.62
MB10	932.180	0.73	932.910	6/05/2019	6.13	926.78	13.7	919.21	7.57
MB11	915.010	0.67	915.680	6/05/2019	NMWL	-	17.9	897.82	nil
MB12	918.330	0.76	919.090	6/05/2019	9.45	909.64	22.3	896.84	12.80
MB13	914.980	0.70	915.680	6/05/2019	NMWL	-	39.4	876.28	nil
MB14	899.790	0.78	900.570	6/05/2019	3.20	897.37	17.7	882.87	14.50

Definitions:

Stickup: Height of piezometer pipe above ground surface.

Ground Elev: Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are

measured to the same datum, hence Piezo GWLs are relative to each other.

GWL: Actual elevation of groundwater at the piezometer relative to an arbitrary datum.

Measured: Depth of groundwater measured from the top of the piezometer pipe.

	MB1		MB5		MB6		MB6B		MB9		MB10		MB11		MB12		MB13		MB14	
Date	Measured	GWL (mAHD)																		
25-Oct-11	NMWL		3.20	912.54	NMWL		9.92	937.12	12.62	916.33	5.77	927.14	NMWL		8.69	910.40	NMWL		2.80	897.77
8-Feb-12	5.85	934.80	3.26	912.48	NMWL		4.68	942.36	12.71	916.24	5.83	927.08	6.87	908.81	8.77	910.32	6.89	908.79	NMWL	
15-Mar-12	3.11	937.54	2.29	913.45	NMWL		7.82	939.22	11.56	917.39	5.51	927.40	6.08	909.60	7.95	911.14	6.11	909.57	2.64	897.93
24-Apr-12	NMWL		2.55	913.19	NMWL		7.47	939.57	12.10	916.85	5.78	927.13	NMWL		8.24	910.85	NMWL		2.67	897.90
31-May-12	5.55	935.10	3.07	912.67	NMWL		9.71	937.33	12.73	916.22	6.04	926.87	NMWL		8.43	910.66	NMWL		2.64	897.93
30-Oct-12	NMWL		3.29	912.45	NMWL		14.64	932.40	13.33	915.62	6.19	926.72	6.83	908.85	8.90	910.19	6.87	908.81	3.11	897.46
17-Apr-13	5.81	934.84	2.87	912.87	NMWL		13.55	933.49	12.80	916.15	6.10	926.81	NMWL		8.50	910.59	NMWL		2.91	897.66
23-Oct-13	NMWL		3.44	912.30	NMWL		13.97	933.07	13.60	915.35	6.35	926.56	NMWL		9.01	910.08	NMWL		3.09	897.48
2-Apr-14	4.90	935.75	3.98	911.76	NMWL		11.00	936.04	13.66	915.29	5.75	927.16	NMWL		9.04	910.05	NMWL		3.20	897.37
2-Jun-14	NMWL		3.96	911.78	NMWL															
21-Oct-14	NMWL		3.81	911.93	NMWL		11.41	935.63	13.13	915.82	6.01	926.90	NMWL		8.89	910.20	NMWL		2.97	897.60
21-Apr-15	NMWL		3.56	912.18	NMWL		14.98	932.06	13.19	915.76	6.26	926.65	NMWL		9.06	910.03	NMWL		3.27	897.30
13-Oct-15	NMWL		3.34	912.40	NMWL		12.18	934.86	13.30	915.65	6.30	926.61	NMWL		8.35	910.74	NMWL		3.06	897.51
15-May-17	6.36	934.30	3.37	912.38	NMWL		11.88	935.16	13.09	915.86	6.58	926.34	NMWL		7.45	911.64	NMWL		3.05	897.52
13-Nov-17	NMWL		3.80	911.94	NMWL		12.15	934.89	13.84	915.11	6.63	926.28	NMWL		8.70	910.39	NMWL		3.29	897.28
29-May-18	NMWL		4.19	911.55	NMWL		12.38	934.66	13.99	914.96	6.83	926.08	NMWL		9.84	909.25	NMWL		3.50	897.07
13-Nov-18	NMWL		3.80	911.94	NMWL		12.15	934.89	13.84	915.11	6.63	926.28	NMWL		8.70	910.39	NMWL		3.29	897.28
6-May-19	NMWL		4.05	911.69	NMWL		13.31	933.73	13.48	915.47	6.13	926.78	NMWL		9.45	909.64	NMWL		3.20	897.37

				Sample ID	MB5	MB9	MB10	MB12	MB14
				Sample Date	7/05/2019	7/05/2019	7/05/2019	7/05/2019	7/05/2019
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS
Physical Parameters	pH (Lab) Electrical Conductivity (Lab)	2	No unit μS/cm	6.0 - 8.5 4478	6.2 1200	6.2 580	6.2 240	5.1 1100	7.1 770
	Total Dissolved Solids	10	mg/L	-	660	290	120	680	440
	Chemical Oxygen Demand	10	mg/L	-	17	10	< 10	19	< 10
Alkalinity	Bicarbonate Alkalinity as CaCO3	5	mg/L	-	190	170	59	37	310
	Total Alkalinity as CaCO3	5	mg/L	350	190	170	59	37	310
Anions	Chloride	1	mg/L	350	220	61	24	240	33
	Fluoride Sulfate (SO4)	0.1	mg/L	-	< 0.1 21	< 0.1	< 0.1	< 0.1 97	< 0.1 44
Cations	Calcium (Ca)	0.2	mg/L mg/L	1000	58	31	12	28	95
	Magnesium (Mg)	0.1	mg/L	-	20	14	8.8	22	28
	Potassium (K)	0.1	mg/L	-	44	13	3.6	8.6	8.4
	Sodium (Na)	0.5	mg/L	230	89	27	11	76	16
Forms of Carbon	Total Organic Carbon	0.2	mg/L	-	5.1	5.2	1.8	5	3.5
Nutrients	Ammonia (NH3) as N	0.01	mg/L	-	6.1	4.5	1.2	3.5	0.21
	Nitrate (NO3) as N	0.005	mg/L	- 0.05	3.9	0.034	0.72	< 0.005	0.016
Trace Metals	Total Phosphorus Hexavalent Chromium (Cr-VI)	0.02 0.004	mg/L mg/L	0.05	0.11 < 0.004	0.08 < 0.004	0.07 < 0.004	< 0.02 < 0.004	0.05 < 0.004
Trace Metals	Chromium (Cr)	0.004	μg/L	-	< 1	< 1	< 1	< 1	< 1
	Aluminium (AI)	5	μg/L	5000	< 5	<5	< 5	890	< 5
	Iron (Fe)	5	μg/L	200	44	14000	390	40000	700
	Manganese (Mn)	1	μg/L	200	700	1400	71	1600	70
Phenolics	Total Phenols	0.01	mg/L	-	< 0.01	0.01	< 0.01	0.02	< 0.01
OC Pesticides	Aldrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha BHC	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha Chlordane Alpha Endosulfan	0.1	μg/L	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	Beta BHC	0.1	μg/L μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Beta Endosulfan	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Delta BHC	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Dieldrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endosulfan sulphate	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin aldehyde	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin ketone	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Heptachlor Heptachlor epoxide	0.1	μg/L μg/L	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	Hexachlorobenzene (HCB)	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Lindane (gamma BHC)	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Methoxychlor	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDD	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDE	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDT	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDD	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDT o,p'-DDE	0.1	μg/L	-	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	Gamma Chlordane	0.1	μg/L μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	trans-Nonachlor	0.1	μg/L	_	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Isodrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Mirex	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OP Pesticides	Azinphos-methyl	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Bromophos Ethyl	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Diazinon (Dimpylate) Dichlorvos	0.5	μg/L	-	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5
	Dimethoate	0.5	μg/L μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Ethion	0.3	μg/L μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Fenitrothion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Malathion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Parathion-ethyl (Parathion)	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Methidathion	0.5	μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Petroleum Hydrocarbons	TRH C6-C9	40	μg/L	-	< 40	< 40	< 40	< 40	< 40
	TRH C10-C14 TRH C15-C28	50	μg/L	-	< 50	< 50	< 50	< 50	< 50
	TRH C29-C36	200	μg/L μg/L	-	< 200 < 200	< 200 < 200	< 200 < 200	< 200 < 200	< 200 < 200
	TRH C10-C36	450	μg/L μg/L	-	< 450	< 450	< 450	< 450	< 450
	TRH C37-C40	200	μg/L μg/L	-	< 200	< 200	< 200	< 200	< 200
Total Recoverable Hydrocarbons	TRH C6-C10	50	μg/L	-	< 50	< 50	< 50	< 50	< 50
** ***	TRH C6-C10 minus BTEX (F1)	50	μg/L	-	< 50	< 50	< 50	< 50	< 50
	TRH >C10-C16	60	μg/L	-	< 60	< 60	< 60	< 60	< 60
	TRH >C16-C34 (F3)	500	μg/L	-	< 500	< 500	< 500	< 500	< 500
	TRH >C34-C40 (F4)	500	μg/L	-	< 500	< 500	< 500	< 500	< 500
	TRH C10-C40	650	μg/L	-	< 650	< 650	< 650	< 650	< 650
BTEXN Analytes	Benzene (F0)	0.5	μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

mg/L milligrams per litre

µg/L micrograms per litre

µS/cm microsiemens per centimetre

LOR limit of reporting

PS primary sample

Criteria Criteria adopted from NSW Environment Protection Authority (EPA) Approved Methods for the Modelling and Assessment of Air Pollutants

in New South Wales', 2005 within criteria criteria exceeded

TABLE 3: LITHGOW SOLID WASTE FACILITY - ACCUMULATED LANDFILL GAS MONITORING METHANE (as %, v/v)

		Date	30/01/2019	19/02/2019	28/03/2019	4/04/2019	6/05/2019
Location	LOR	Units					
Site Shed	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Weighbridge	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Office (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Green Shed (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Pump Room (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

LOR limit of reporting

SGS Alexandria Environmental

au.environmental.sydney@sgs.com

CLIENT DETAILS -

LABORATORY DETAILS

Manager

Address

Laboratory

Brendan Stuart Contact

PREMISE Client

Address LEVEL 1

100 BRUNSWICK STREET

61 2 6939 5000

(Not specified)

(Not specified)

5

217500 - Lithgow SWF

FORTITUDE VALLEY QLD 4006

Telephone

+61 2 8594 0499 Facsimile

Brendan.stuart@premise.com.au

Email

SGS Reference SE192430 R0

Date Received Date Reported 08 May 2019 16 May 2019

Huong Crawford

+61 2 8594 0400

Unit 16, 33 Maddox St

Alexandria NSW 2015

COMMENTS

Order Number

Telephone

Facsimile

Email

Project

Samples

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Senior Organic Chemist/Metals Chemis

Kamrul Ahsan Senior Chemist Ly Kim Ha

Organic Section Head

Sembol

Shane McDermott Inorganic/Metals Chemist

> SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

Member of the SGS Group

SE192430 R0

		Sample Number Sample Matrix Sample Date Sample Name	SE192430.001 Water 07 May 2019 MB5	SE192430.002 Water 07 May 2019 MB9	SE192430.003 Water 07 May 2019 MB10	SE192430.004 Water 07 May 2019 MB12
Parameter	Units					
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 9/	5/2019				
TRH C6-C10	μg/L	50	<50	<50	<50	<50
TRH C6-C9	µg/L	40	<40	<40	<40	<40
Surrogates						
			400	400	400	400
Dibromofluoromethane (Surrogate)	%	-	102	100	102	102
d4-1,2-dichloroethane (Surrogate)	%	-	112	113	113	113
d8-toluene (Surrogate)	%	-	102	101	102	103
Bromofluorobenzene (Surrogate) VPH F Bands	%	-	104	102	102	103
VEN E DANUS						
Benzene (F0)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50
TRH (Total Recoverable Hydrocarbons) in Water Method: AN	I403 Test	ed: 9/5/2019				
TRH C10-C14	μg/L	50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200
TRH C10-C36	µg/L	450	<450	<450	<450	<450
TRH C10-C40	µg/L	650	<650	<650	<650	<650
TRH F Bands TRH >C10-C16	µg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500
OC Pesticides in Water Method: AN420 Tested: 9/5/2019						
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.1				
Zindano (ganina zino)	P9'-		<0.1	<0.1	<0.1	<0.1
Heotachlor	ug/L	0.1	<0.1	<0.1 <0.1	<0.1	<0.1
Heptachlor Aldrin	μg/L μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Aldrin Beta BHC	μg/L μg/L	0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC	µg/L µg/L µg/L	0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC	µg/L µg/L µg/L	0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE	µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan	µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane	µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor	µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Hapha Chlordane trans-Nonachlor p,p'-DDE Dieldrin	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane trans-Nonachlor p,p'-DDE Dieldrin Endrin	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane trans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD	µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Itrans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDD	µg/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Detta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Itrans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDD Beta Endosulfan	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Itrans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDD Beta Endosulfan	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Itrans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDT Beta Endosulfan p,p'-DDD p,p'-DDT Beta Endosulfan p,p'-DDD	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Itrans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDT Beta Endosulfan p,p'-DDD p,p'-DDD Endosulfan	рд/L рд/L рд/L рд/L рд/L рд/L рд/L рд/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDT Beta Endosulfan Beta Endosulfan p,p'-DDD Endosulfan Endrin o,p'-DDT Beta Endosulfan Endrin End	ру/L ру/L ру/L ру/L ру/L ру/L ру/L ру/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDT Beta Endosulfan p,p'-DDD beta Endosulfan p,p'-DDT Endosulfan uphate Endrin aldehyde Methoxychlor	ру/L ру/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Aldrin Beta BHC Delta BHC Heptachlor epoxide o,p'-DDE Alpha Endosulfan Gamma Chlordane Alpha Chlordane trans-Nonachlor p,p'-DDE Dieldrin Endrin o,p'-DDD o,p'-DDT Beta Endosulfan p,p'-DDT Beta Endosulfan p,p'-DDD Endosulfan endosulfan p,p'-DDT Endosulfan Endrin endosulfan p,p'-DDT Endosulfan p,p'-DDT	ру/L ру/L ру/L ру/L ру/L ру/L ру/L ру/L	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

16-May-2019 Page 2 of 18

Conductivity @ 25 C

ANALYTICAL REPORT

SE192430 R0

	Sa S	nple Number ample Matrix Sample Date ample Name	SE192430.001 Water 07 May 2019 MB5	SE192430.002 Water 07 May 2019 MB9	SE192430.003 Water 07 May 2019 MB10	SE192430.00 Water 07 May 201 MB12
Parameter	Units	LOR				
OC Pesticides in Water Method: AN420 Tested: 9/5/2019 Surrogates	(continued)					
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	90	88	61	63
OP Pesticides in Water Method: AN420 Tested: 9/5/2019						
Dichlorvos	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
enitrothion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
arathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
romophos Ethyl	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
ethidathion	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
thion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
zinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Surrogates						
-fluorobiphenyl (Surrogate)	%	-	72	66	58	56
14-p-terphenyl (Surrogate)	%	-	90	88	82	76
Total Phenolics in Water Method: AN289 Tested: 15/5/2019)				<u>'</u>	
otal Phenols	mg/L	0.01	<0.01	0.01	<0.01	0.02
pH in water Method: AN101 Tested: 9/5/2019						
	No unit	_	6.2	6.2	6.2	5.1

μS/cm

16-May-2019 Page 3 of 18

Chemical Oxygen Demand

ANALYTICAL REPORT

SE192430 R0

		ample Number Sample Matrix Sample Date	SE192430.001 Water 07 May 2019	SE192430.002 Water 07 May 2019	SE192430.003 Water 07 May 2019	SE192430.004 Water 07 May 2019
		Sample Name	MB5	MB9	MB10	MB12
Parameter	Units	LOR				
Forms of Carbon Method: AN190 Tested: 14/5/2019						
Total Organic Carbon as NPOC	mg/L	0.2	5.1	5.2	1.8	5.0
Alkalinity Method: AN135 Tested: 9/5/2019						
Bicarbonate Alkalinity as CaCO3	mg/L	5	190	170	59	37
Total Alkalinity as CaCO3	mg/L	5	190	170	59	37
Anions by Ion Chromatography in Water Method: AN245 Te	sted: 9/5/20	019				
Fluoride	mg/L	0.1	<0.10	<0.10	<0.10	<0.10
Chloride	mg/L	1	220	61	24	240
Nitrate Nitrogen, NO3-N	mg/L	0.005	3.9	0.034	0.72	<0.005
Sulfate, SO4	mg/L	1	21	14	14	97
Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: A	AN291 Te	sted: 9/5/201	9	·		
Ammonia Nitrogen, NH₃ as N	mg/L	0.01	6.1	4.5	1.2	3.5
Total Phosphorus by Kjeldahl Digestion DA in Water Method:	AN279/AN2	93(Sydney on	ly) Tested: 13	/5/2019		
Total Phosphorus (Kjeldahl Digestion) as P	mg/L	0.02	0.11	0.08	0.07	<0.02
COD in Water Method: AN179/AN181 Tested: 10/5/2019						

16-May-2019 Page 4 of 18

Manganese, Mn

ANALYTICAL REPORT

SE192430 R0

1600

	Sa S	nple Number ample Matrix Sample Date ample Name	SE192430.001 Water 07 May 2019 MB5	SE192430.002 Water 07 May 2019 MB9	SE192430.003 Water 07 May 2019 MB10	SE192430.004 Water 07 May 2019 MB12
Parameter	Units	LOR				
Hexavalent Chromium in water by Discrete Analyser Method:	AN283 Tes	ted: 10/5/20	19			
Hexavalent Chromium, Cr6+	mg/L	0.004	<0.004	<0.004	<0.004	<0.004
Total Dissolved Solids (TDS) in water Method: AN113 Teste Total Dissolved Solids Dried at 175-185°C	d: 9/5/2019 mg/L	10	660	290	120	680
Metals in Water (Dissolved) by ICPOES Method: AN320 Tes	sted: 10/5/201	9				
Calcium, Ca	mg/L	0.2	58	31	12	28
Magnesium, Mg	mg/L	0.1	20	14	8.8	22
Potassium, K	mg/L	0.1	44	13	3.6	8.6
Sodium, Na	mg/L	0.5	89	27	11	76
Trace Metals (Dissolved) in Water by ICPMS Method: AN318	Tested: 10/5	/2019				
Aluminium, Al	μg/L	5	<5	<5	<5	890
Chromium, Cr	μg/L	1	<1	<1	<1	<1
Iron, Fe	μg/L	5	44	14000	390	40000

1400

16-May-2019 Page 5 of 18

SE192430 R0

	Sample Number Sample Matrix Sample Date Sample Name	07 May 2019
Parameter	Units LOR	

Volatile Petroleum Hydrocarbons in Water Method: AN433 Tested: 9/5/2019

TRH C6-C10	μg/L	50	<50
TRH C6-C9	μg/L	40	<40

Surrogates

Dibromofluoromethane (Surrogate)	%	-	96
d4-1,2-dichloroethane (Surrogate)	%	-	108
d8-toluene (Surrogate)	%	-	102
Bromofluorobenzene (Surrogate)	%	-	102

VPH F Bands

Benzene (F0)	μg/L	0.5	<0.5	
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	

TRH (Total Recoverable Hydrocarbons) in Water Method: AN403 Tested: 9/5/2019

TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	μg/L	200	<200
TRH C37-C40	μg/L	200	<200
TRH C10-C36	μg/L	450	<450
TRH C10-C40	μg/L	650	<650

TRH F Bands

TRH >C10-C16	μg/L	60	<60
TRH >C16-C34 (F3)	μg/L	500	<500
TRH >C34-C40 (F4)	μg/L	500	<500

16-May-2019 Page 6 of 18

SE192430 R0

Sample Number SE192430.005
Sample Matrix Water
Sample Date 07 May 2019
Sample Name MB14
Parameter Units LOR

OC Pesticides in Water	Method: AN420	Tested: 9/5/2019
-------------------------------	---------------	------------------

Hexachlorobenzene (HCB)	μg/L	0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1
Heptachlor	μg/L	0.1	<0.1
Aldrin	μg/L	0.1	<0.1
Beta BHC	μg/L	0.1	<0.1
Delta BHC	μg/L	0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1
o,p'-DDE	μg/L	0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1
Gamma Chlordane	μg/L	0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1
p,p'-DDE	μg/L	0.1	<0.1
Dieldrin	μg/L	0.1	<0.1
Endrin	μg/L	0.1	<0.1
o,p'-DDD	μg/L	0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1
Beta Endosulfan	μg/L	0.1	<0.1
p,p'-DDD	μg/L	0.1	<0.1
p,p'-DDT	μg/L	0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1
Endrin aldehyde	μg/L	0.1	<0.1
Methoxychlor	μg/L	0.1	<0.1
Endrin ketone	μg/L	0.1	<0.1
Isodrin	μg/L	0.1	<0.1
Mirex	μg/L	0.1	<0.1

Surrogates

Tetrachloro-m-xylene (TCMX) (Surrogate) % - **71**

OP Pesticides in Water Method: AN420 Tested: 9/5/2019

Dichlorvos	μg/L	0.5	<0.5
Dimethoate	μg/L	0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2
Malathion	μg/L	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2
Methidathion	μg/L	0.5	<0.5
Ethion	μg/L	0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2

16-May-2019 Page 7 of 18

Total Alkalinity as CaCO3

ANALYTICAL REPORT

310

mg/L

SE192430 R0

	Sa S	nple Number ample Matrix Sample Date ample Name	SE192430.005 Water 07 May 2019 MB14			
Parameter	Units	LOR				
OP Pesticides in Water Method: AN420 Tested: 9/5/2019	(continued)					
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	62			
d14-p-terphenyl (Surrogate)	%	-	88			
Total Phenolics in Water Method: AN289 Tested: 15/5/2019						
Total Phenols	mg/L	0.01	<0.01			
pH in water Method: AN101 Tested: 9/5/2019						
pH**	No unit	-	7.1			
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 9/5	5/2019				
Conductivity @ 25 C	μS/cm	2	770			
Forms of Carbon Method: AN190 Tested: 14/5/2019						
Total Organic Carbon as NPOC	mg/L	0.2	3.5			
Alkalinity Method: AN135 Tested: 9/5/2019						
Bicarbonate Alkalinity as CaCO3	mg/L	5	310			

16-May-2019 Page 8 of 18

Total Dissolved Solids Dried at 175-185°C

ANALYTICAL REPORT

<0.004

440

10

mg/L

SE192430 R0

	S	nple Number ample Matrix Sample Date sample Name	Water 07 May 2019
Parameter	Units	LOR	
Anions by Ion Chromatography in Water Method: AN245 Te	sted: 9/5/20	19	
Fluoride	mg/L	0.1	<0.10
Chloride	mg/L	1	33
Nitrate Nitrogen, NO3-N	mg/L	0.005	0.016
Sulfate, SO4	mg/L	1 ted: 9/5/20	19
Sulfate, SO4 Ammonia Nitrogen by Discrete Analyser (Aquakem) Method:	_	1 ted: 9/5/20	.
Sulfate, SO4 Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: Ammonia Nitrogen, NH ₃ as N	AN291 Tes	ted: 9/5/20	0.21
Sulfate, SO4 Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: Ammonia Nitrogen, NH ₃ as N	AN291 Tes	ted: 9/5/20	0.21
Sulfate, SO4 Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: Ammonia Nitrogen, NH ₃ as N Total Phosphorus by Kjeldahl Digestion DA in Water Method:	MN291 Tes mg/L AN279/AN29	0.01 3(Sydney o	0.21 nly) Tested: 13

Total Dissolved Solids (TDS) in water Method: AN113 Tested: 9/5/2019

16-May-2019 Page 9 of 18

SE192430 R0

		ample Number Sample Matrix Sample Date Sample Name	SE192430.005 Water 07 May 2019 MB14
Parameter l	Units	LOR	

Metals in Water (Dissolved) by ICPOES Method: AN320 Tested: 10/5/201	Metals in Water	er (Dissolved)	by ICPOES	Method: AN320	Tested: 10/5/2019
--	-----------------	----------------	-----------	---------------	-------------------

Calcium, Ca	mg/L	0.2	95
Magnesium, Mg	mg/L	0.1	28
Potassium, K	mg/L	0.1	8.4
Sodium, Na	mg/L	0.5	16

Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 10/5/2019

Aluminium, Al	μg/L	5	<5
Chromium, Cr	μg/L	1	<1
Iron, Fe	μg/L	5	700
Manganese, Mn	μg/L	1	70

16-May-2019 Page 10 of 18

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Bicarbonate Alkalinity as CaCO3	LB173356	mg/L	5	<5	1%	NA
Total Alkalinity as CaCO3	LB173356	mg/L	5	<5	1%	113%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
J		Reference					%Recovery	%Recovery
ı	Ammonia Nitrogen, NH₃ as N	LB173268	mg/L	0.01	<0.01	2 - 9%	98%	84%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Fluoride	LB173272	mg/L	0.1	<0.10		94%
Chloride	LB173272	mg/L	1	<0.05		96%
Nitrate Nitrogen, NO3-N	LB173272	mg/L	0.005	<0.005	4%	97%
Sulfate, SO4	LB173272	mg/L	1	<1.0	0 - 2%	94%

COD in Water Method: ME-(AU)-[ENV]AN179/AN181

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
п		Reference					%Recovery
ı	Chemical Oxygen Demand	LB173419	mg/L	10	<10	1%	97%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ш		Reference					%Recovery
1	Conductivity @ 25 C	LB173304	μS/cm	2	<2	0%	97%

Forms of Carbon Method: ME-(AU)-[ENV]AN190

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
1		Reference					%Recovery	%Recovery
1	Total Organic Carbon as NPOC	LB173665	mg/L	0.2	<0.2	2%	95%	99%

16-May-2019 Page 11 of 18

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Pa	rameter	QC	Units	LOR	МВ	DUP %RPD	LCS	MS
		Reference					%Recovery	%Recovery
Н	exavalent Chromium, Cr6+	LB173414	mg/L	0.004	<0.004	0%	108%	107%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB173386	mg/L	0.2	<0.2	1%	88%	76%
Magnesium, Mg	LB173386	mg/L	0.1	<0.1	0%	93%	74%
Potassium, K	LB173386	mg/L	0.1	<0.1	0%	88%	80%
Sodium, Na	LB173386	mg/L	0.5	<0.5	0%	88%	65%

OC Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Hexachlorobenzene (HCB)	LB173270	μg/L	0.1	<0.1	NA
Alpha BHC	LB173270	μg/L	0.1	<0.1	NA
Lindane (gamma BHC)	LB173270	μg/L	0.1	<0.1	NA
Heptachlor	LB173270	μg/L	0.1	<0.1	100%
Aldrin	LB173270	μg/L	0.1	<0.1	80%
Beta BHC	LB173270	μg/L	0.1	<0.1	NA
Delta BHC	LB173270	μg/L	0.1	<0.1	103%
Heptachlor epoxide	LB173270	μg/L	0.1	<0.1	NA
o,p'-DDE	LB173270	μg/L	0.1	<0.1	NA
Alpha Endosulfan	LB173270	μg/L	0.1	<0.1	NA
Gamma Chlordane	LB173270	μg/L	0.1	<0.1	NA
Alpha Chlordane	LB173270	μg/L	0.1	<0.1	NA
trans-Nonachlor	LB173270	μg/L	0.1	<0.1	NA
p,p'-DDE	LB173270	μg/L	0.1	<0.1	NA
Dieldrin	LB173270	μg/L	0.1	<0.1	109%
Endrin	LB173270	μg/L	0.1	<0.1	111%
o,p'-DDD	LB173270	μg/L	0.1	<0.1	NA
o,p'-DDT	LB173270	μg/L	0.1	<0.1	NA
Beta Endosulfan	LB173270	μg/L	0.1	<0.1	NA
p,p'-DDD	LB173270	μg/L	0.1	<0.1	NA
p,p'-DDT	LB173270	μg/L	0.1	<0.1	104%
Endosulfan sulphate	LB173270	μg/L	0.1	<0.1	NA
Endrin aldehyde	LB173270	μg/L	0.1	<0.1	NA
Methoxychlor	LB173270	μg/L	0.1	<0.1	NA
Endrin ketone	LB173270	μg/L	0.1	<0.1	NA
Isodrin	LB173270	μg/L	0.1	<0.1	NA
Mirex	LB173270	μg/L	0.1	<0.1	NA

Surrogates

	Parameter	QC	Units	LOR	MB	LCS
		Reference				%Recovery
ı	Tetrachloro-m-xylene (TCMX) (Surrogate)	LB173270	%	-	81%	52%

16-May-2019 Page 12 of 18

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dichlorvos	LB173270	μg/L	0.5	<0.5	107%
Dimethoate	LB173270	μg/L	0.5	<0.5	NA
Diazinon (Dimpylate)	LB173270	μg/L	0.5	<0.5	106%
Fenitrothion	LB173270	μg/L	0.2	<0.2	NA
Malathion	LB173270	μg/L	0.2	<0.2	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB173270	μg/L	0.2	<0.2	109%
Parathion-ethyl (Parathion)	LB173270	μg/L	0.2	<0.2	NA
Bromophos Ethyl	LB173270	μg/L	0.2	<0.2	NA
Methidathion	LB173270	μg/L	0.5	<0.5	NA
Ethion	LB173270	μg/L	0.2	<0.2	107%
Azinphos-methyl	LB173270	μg/L	0.2	<0.2	NA

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
2-fluorobiphenyl (Surrogate)	LB173270	%	-	64%	64%
d14-p-terphenyl (Surrogate)	LB173270	%	-	62%	74%

pH in water Method: ME-(AU)-[ENV]AN101

Pa	arameter	QC	Units	LOR	MB	LCS
		Reference				%Recovery
р	H**	LB173304	No unit	-	6.3	NA

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Dissolved Solids Dried at 175-185°C	LB173354	mg/L	10	<10	4 - 7%	96%

16-May-2019 Page 13 of 18

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Total Phenolics in Water Method: ME-(AU)-[ENV]AN289

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
J		Reference					%Recovery	%Recovery
ı	Total Phenols	LB173743	mg/L	0.01	<0.01	0%	103%	77%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

	Parameter	QC	Units	LOR	MB	LCS	MS
		Reference				%Recovery	%Recovery
ı	Total Phosphorus (Kjeldahl Digestion) as P	LB173515	mg/L	0.02	<0.02	99%	101%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Aluminium, Al	LB173389	μg/L	5	<5		103%	105%
Chromium, Cr	LB173389	μg/L	1	<1	2%	110%	112%
Iron, Fe	LB173389	μg/L	5	<5	2%	117%	110%
Manganese, Mn	LB173389	μg/L	1	<1	1%	101%	55%

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
TRH C10-C14	LB173270	μg/L	50	<50	0%	100%
TRH C15-C28	LB173270	μg/L	200	<200	0%	124%
TRH C29-C36	LB173270	μg/L	200	<200	0%	119%
TRH C37-C40	LB173270	μg/L	200	<200	0%	NA
TRH C10-C36	LB173270	μg/L	450	<450	0%	NA
TRH C10-C40	LB173270	μg/L	650	<650	0%	NA

TRH F Bands

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
TRH >C10-C16	LB173270	μg/L	60	<60	0%	109%
TRH >C16-C34 (F3)	LB173270	μg/L	500	<500	0%	128%
TRH >C34-C40 (F4)	LB173270	μg/L	500	<500	0%	117%

16-May-2019 Page 14 of 18

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided

The sample of the two results divided and the transfer of t by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

1	Parameter	QC	Units	LOR	MB	LCS
J		Reference				%Recovery
ı	TRH C6-C10	LB173320	μg/L	50	<50	100%
ı	TRH C6-C9	LB173320	μg/L	40	<40	93%

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Dibromofluoromethane (Surrogate)	LB173320	%	-	129%	109%
d4-1,2-dichloroethane (Surrogate)	LB173320	%	-	77%	91%
d8-toluene (Surrogate)	LB173320	%	-	91%	101%
Bromofluorobenzene (Surrogate)	LB173320	%	-	110%	100%

VPH F Bands

Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
Benzene (F0)	LB173320	μg/L	0.5	<0.5	NA
TRH C6-C10 minus BTEX (F1)	LB173320	μg/L	50	<50	99%

16-May-2019 Page 15 of 18

SGS

METHOD SUMMARY

METHOD	
METHOD —	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN113	The Total Dissolved Solids residue may also be ignited at 550 C and volatile TDS (Organic TDS) and non-volatile TDS (Inorganic) can be determined.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN181	Analysis of COD by Semi Closed Reflux: The sample is refluxed with strong acid and a known excess of oxidant. After digestion the unreduced oxidant is back titrated to determine the amount of oxidant consumed. The chemically oxidised matter is calculated in terms of oxygen equivalents. Reference APHA 5220 B.
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.
AN283	Hexavalent Chromium via Aquakem DA: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.

16-May-2019 Page 16 of 18

METHOD SUMMARY

METHOD	NET LODGE COLUMN TO VICE THE VICE THE COLUMN TO VIC
METHOD -	METHODOLOGY SUMMARY
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

16-May-2019 Page 17 of 18

FOOTNOTES -

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte

NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sqs.com.au.pv.sqsvr/en-qb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

16-May-2019 Page 18 of 18