

Premise NSW Pty Ltd
62 075 657 359
154 Peisley St, Orange NSW 2800
PO Box 1963, Orange NSW 2800
02 6393 5000
orange@premise.com.au
premise.com.au

Our Ref: 217500_LET_009.docx

16 December 2019

Lithgow City Council PO Box 19, 180 Mort Street Lithgow NSW 2790

Attention: Nigel Campbell, Waste & Recycling Coordinator

ENVIRONMENTAL MONITORING OF LITHGOW SOLID WASTE FACILITY

Premise has completed scheduled groundwater and accumulated landfill gas monitoring at Lithgow Solid Waste Facility, located off Geordie Street, Lithgow on 19 November 2019. Leachate discharge monitoring from point LW1 was also conducted.

Groundwater Levels

Groundwater was gauged at six (6) groundwater monitoring wells across the site. Groundwater gauging data is included in **Table 1** (attached), and elevation trends are shown on **Figure 1**. No groundwater was recorded in monitoring stations MB1, MB6, MB11 and MB13. Observations were as follows:

- Depths to groundwater ranged from 3.36 metres below ground level (mbgl) at MB14, to 14.25 mbgl at MB6B. Corrected groundwater elevations ranged from 897.21 metres Australian Height Datum (mAHD) at MB14, to 932.79 mAHD at MB6B.
- Inference of groundwater elevations, calculated from available survey data from installed groundwater monitoring wells indicate a flow direction to the south-west.

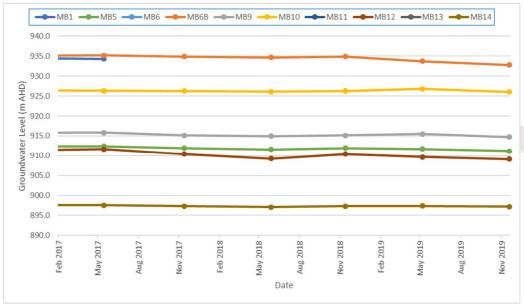


Figure 1: Lithgow Solid Waste Facility - Groundwater Elevations

Groundwater Quality

Groundwater samples were able to be collected from wells MB5, MB6B, MB9, MB10, MB12 and MB14. The monitoring well casing at location MB6B is bent at approximately 2.0 mbgl and was sampled by Hydrasleeve® sampling equipment, while other monitoring wells were sampled using bailers. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Groundwater quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH ranged from 5.2 at MB12 to 7.0 at MB14. pH of groundwater at MB12 was below the guideline range considered suitable for pumping, irrigation and stock watering (6.0 to 8.5 pH units).
- Electrical conductivity (EC) ranged from 220 μS/cm at piezometer MB10 to 1300 μS/cm at piezometer MB6B.
- Total dissolved solids (TDS) ranged from 92 mg/L at MB10 to 630 mg/L at MB12. TDS concentrations were below the livestock watering 'loss of production' tolerance limit for the most susceptible livestock category, poultry (3,000 mg/L ANZECC & ARMCANZ, 2000).
- The chemical oxygen demand (COD) of groundwater samples ranged from below the laboratory limit of reporting (LOR) of 10 mg/L at MB10 and MB14, to 39 mg/L at MB6B.
- Total alkalinity in groundwater ranged from 38 mg/L at MB12 to 350 mg/L at MB6B. Alkalinity of groundwater did not exceed the guideline hardness value for potential fouling of waters (350 mg/L).
- Groundwater chloride concentrations ranged from 20 mg/L at MB10 to 230 mg/L at MB12. All
 concentrations were below the guideline value for protection of moderately sensitive crops
 (350 mg/L).
- Fluoride concentrations in groundwater were all below the laboratory LOR of 0.1 mg/L. All concentrations were below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- Sulfate concentrations in groundwater ranged from 16 mg/L at MB10 to 89 mg/L at MB12.
- Calcium concentrations ranged from 13 mg/L at MB10 to 92 mg/L at MB14.
- Magnesium concentrations ranged from 9.7 mg/L at MB10 to 64 mg/L at MB6B.
- Potassium concentrations ranged from 2.9 mg/L at MB10 to 36 mg/L at MB5.
- Concentrations of sodium ranged from 9.8 mg/L at MB10 to 84 mg/L at MB5. Sodium concentrations were below the guideline level for irrigation to moderately sensitive crops (<230 mg/L).
- Ammonia concentrations in groundwater ranged from 0.22 mgN/L at MB14 to 3.2 mgN/L at MB12.
- Nitrate concentrations ranged from below the laboratory LOR of 0.005 mgN/L at MB6B, MB9, MB12 and MB14, to 3.9 mgN/L at MB5.
- Phosphorus concentrations in groundwater ranged from below the laboratory LOR of 0.02 mg/L at MB12 and MB14, to 0.48 mg/L at MB6B. Phosphorus concentrations at MB5 and MB6B were above the guideline value of 0.05 mg/L for long term irrigation use (up to 100 years).

- Aluminium concentrations in groundwater were recorded at below the laboratory LOR of 0.005 mg/L with the exception of MB12, which recorded a concentration of 0.44 mg/L. Aluminium concentrations in groundwater were below the long-term (up to 100 years) irrigation guideline concentration of 5 mg/L.
- Hexavalent chromium and total chromium concentrations were below the respective laboratory LORs of 0.004 mg/L and 0.001 mg/L. Concentrations of total chromium were lower than the longterm (up to 100 years) irrigation guideline concentration of 0.1 mg/L.
- Iron concentrations ranged from 0.001 mg/L at MB6B to 41 mg/L at MB12. Iron concentrations at MB9, MB10, MB12 and MB14 exceeded the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Manganese concentrations ranged from 0.083 mg/L at MB14 to 3.6 mg/L at MB6B. Manganese concentrations at locations MB5, MB6B, MB9 and MB12 the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Total organic carbon (TOC) in groundwater ranged from 1.0 mg/L at MB10 to 7.4 mg/L at MB6B.
- Total phenols were at or below the laboratory LOR of 0.01 mg/L at all groundwater monitoring points.
- Organochlorine pesticides and organophosphorus pesticides were below respective laboratory LORs at all groundwater monitoring points.
- Total petroleum hydrocarbons (TPH) and total recoverable hydrocarbons (TRH) were below respective laboratory LORs at all groundwater monitoring points, with the exception of TPH C6-C9 fraction and TRH C6-C10 fraction at MB12 (both recorded at 130µg/L).

Leachate

The leachate sample collected from LW1 was couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 3** (attached), and laboratory certificates have also been appended to this letter.

Leachate quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH was slightly alkaline, recorded at 6.7, noted to be near-neutral.
- Electrical conductivity (EC) was recorded to be 1,000 μS/cm. The corresponding total dissolved solids (TDS) concentration was calculated to be 670 mg/L, below the livestock watering 'loss of production' tolerance limit for the most susceptible livestock category, poultry (3,000 mg/L ANZECC & ARMCANZ, 2000).
- The chemical oxygen demand (COD) was recorded to be 12 mg/L.
- The biochemical oxygen demand (BOD) was recorded to be less than the laboratory LOR of 5 mg/L. High COD relative to BOD may be indicative of the presence of non-biodegradable organic matter (e.g. oils, humic substances, organic polymers).
- Total alkalinity was recorded at 99 mg/L, which was below the guideline hardness value for potential fouling of waters (350 mg/L).
- The recorded chloride concentration was 220 mg/L, and below the guideline value for protection of moderately sensitive crops (350 mg/L).

- The fluoride concentration of leachate was recorded to be 0.17 mg/L, below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- The leachate sulphate concentration was recorded to be 23 mg/L.
- Calcium in leachate was recorded to be 52 mg/L.
- Magnesium in leachate was recorded to be 18 mg/L.
- Potassium in leachate was recorded to be 16 mg/L.
- Sodium in leachate was recorded to be 100 mg/L. The sodium concentration was below the guideline level for irrigation to moderately sensitive crops (230 mg/L).
- Total organic carbon (TOC) was recorded at 4.3 mg/L.
- The ammonia concentration of leachate was recorded to be 0.18 mgN/L.
- The nitrate concentration of leachate was recorded to be 0.46 mgN/L.
- Iron in leachate was recorded to be 0.7 mg/L, and above the long term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Manganese in leachate was recorded to be 0.78 mg/L, and above the long term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Total phenolics in leachate were recorded at equivalent to the laboratory LOR of 0.01 mg/L.

Accumulated Landfill Gas Monitoring

Gas concentrations in buildings and sheds within the required monitoring distance of 250 metres of filled areas were all below the respective threshold concentration of 1.25 % (v/v) during the monthly monitoring rounds conducted in June 2019 to November 2019. Results of gas monitoring are included in **Table 4** (attached)

The next routine monitoring for groundwater, leachate and accumulated landfill gas is scheduled for May 2020. Surface water monitoring is required to take place any calendar month when a surface water discharge is recorded. Please do not hesitate to contact us with any questions or comments you may have regarding this report.

Yours faithfully

Premise Australia Pty Ltd

BRENDAN STUART Environmental Scientist

No. of Attachments – 5: Environmental Monitoring Point Locations

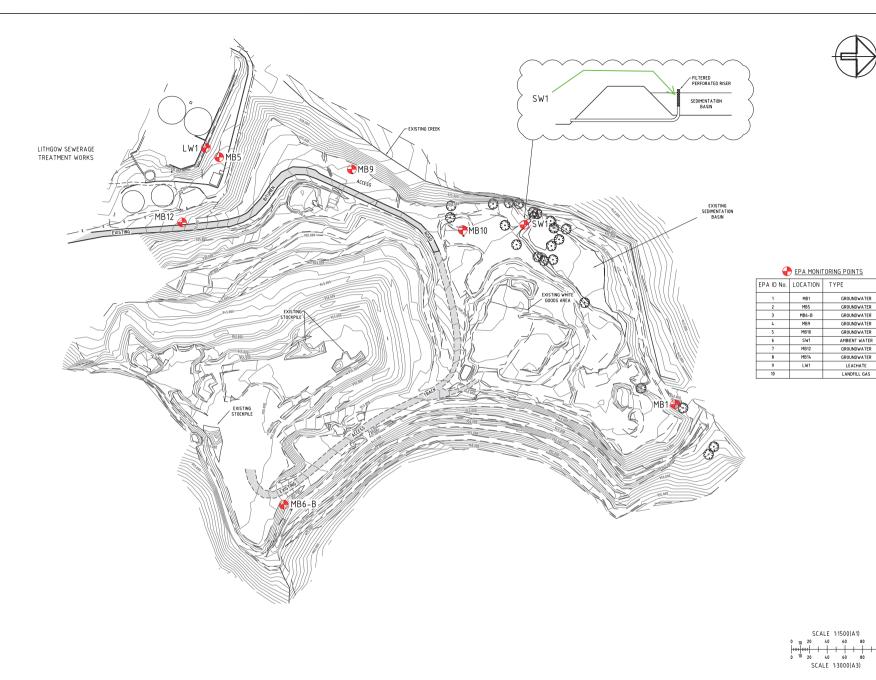

Table 1 – Groundwater Level Measurements

Table 2 – Results of Laboratory Analyses (Groundwater) – November 2019

Table 3 – Results of Laboratory Analyses (Leachate) – November 2019

Table 4 – Accumulated Landfill Gas Monitoring

SGS Laboratories Analytical Reports - November 2019

THIS PLAN IS PREPARED FROM A FIELD SURVEY FOR THE PURPOSE OF DESIGNING NEW CONSTRUCTIONS ON THE LAND AND SHOULD NOT BE USED FOR ANY OTHER PURPOSE.

VISIBLE SERVICES HAVE BEEN LOCATED ONLY. PRIOR TO ANY DEMOLITION, EXCAVATION OR CONSTRUCTION ON THE SITE, THE RELEVANT AUTHORITIES SHOULD BE CONTACTED FOR LOCATION OF FURTHER KNOPERGROUND SERVICES AND DETAILED LOCATIONS OF ALL SERVICES.

THESE NOTES ARE AN INTEGRAL PART OF THIS PLAN.

EXISTING TOP OF BANK

EXISTING ELECTRICITY

EXISTING VEGETATION

EXISTING ACCESS ROAD

◆ MB14

NOTES:

LEGEND:

(No	DATE	CHECK	CHECK	DETAILS
Α	27/06/11	LP	AB	WORKING DRAFT
В	28/09/11	LP	AB	EPL VARIATION
$\overline{}$				

LITHGOW SOLID WASTE FACILITY LANDFILL ENVIRONMENTAL MANAGEMENT PLAN

FILE REFERENCE: 01/Projects/211091/04/1/26/Libhpon/21109_08_07/01-07/06/09

APPROVAL AUTHORITY

ENVIRONMENTAL PROTECTION AUTHORITY EPL: 6004

DRAWING
ENVIRONMENTAL MONITORING
POINTS
PROJECT 211109 DRAWING 01B FV04 REV.

PROJECT 211109 DRAMING 01B_EV04 REV. B

SOURCE: CRAVEN, ELLISTON & HAYES ILITHOOM PTY, LTD, IDRAMING NO. E448-10, DATED 19/191/29100

TABLE 1: LITHGOW SOLID WASTE FACILITY - GROUNDWATER LEVEL RESULTS

Ground Water Levels: 13-Nov-18

Piezometer Details:

	Ground Elev (mAHD)	Stickup (m)	Elevation Top PVC (mAHD)	Date	Measured (m)	GWL (mAHD)	Well Depth (m)	Well Base (mAHD)	Water Column (m)
MB1	939.790	0.86	940.650	13/11/2018	NMWL	-	6.5	934.15	nil
MB5	914.940	0.80	915.740	13/11/2018	3.80	911.94	9.8	905.94	6.00
MB6	945.820	0.85	946.670	13/11/2018	NMWL	-	-	-	nil
MB6B	946.290	0.75	947.040	13/11/2018	12.15	934.89	19.3	927.74	7.15
MB9	928.260	0.69	928.950	13/11/2018	13.84	915.11	17.1	911.85	3.26
MB10	932.180	0.73	932.910	13/11/2018	6.63	926.28	13.7	919.21	7.07
MB11	915.010	0.67	915.680	13/11/2018	NMWL	-	17.9	897.82	nil
MB12	918.330	0.76	919.090	13/11/2018	8.70	910.39	22.3	896.84	13.55
MB13	914.980	0.70	915.680	13/11/2018	NMWL	-	39.4	876.28	nil
MB14	899.790	0.78	900.570	13/11/2018	3.29	897.28	17.7	882.87	14.41

Definitions:

Stickup: Height of piezometer pipe above ground surface.

Ground Elev: Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are

measured to the same datum, hence Piezo GWLs are relative to each other.

GWL: Actual elevation of groundwater at the piezometer relative to an arbitrary datum.

Measured: Depth of groundwater measured from the top of the piezometer pipe.

	MB1		MB5		MB6		MB6B		MB9		MB10		MB11		MB12		MB13		MB14	
Date	Measured	GWL (mAHD)																		
25-Oct-11	NMWL		3.20	912.54	NMWL		9.92	937.12	12.62	916.33	5.77	927.14	NMWL		8.69	910.40	NMWL		2.80	897.77
08-Feb-12	5.85	934.80	3.26	912.48	NMWL		4.68	942.36	12.71	916.24	5.83	927.08	6.87	908.81	8.77	910.32	6.89	908.79	NMWL	
15-Mar-12	3.11	937.54	2.29	913.45	NMWL		7.82	939.22	11.56	917.39	5.51	927.40	6.08	909.60	7.95	911.14	6.11	909.57	2.64	897.93
24-Apr-12	NMWL		2.55	913.19	NMWL		7.47	939.57	12.10	916.85	5.78	927.13	NMWL		8.24	910.85	NMWL		2.67	897.90
31-May-12	5.55	935.10	3.07	912.67	NMWL		9.71	937.33	12.73	916.22	6.04	926.87	NMWL		8.43	910.66	NMWL		2.64	897.93
30-Oct-12	NMWL		3.29	912.45	NMWL		14.64	932.40	13.33	915.62	6.19	926.72	6.83	908.85	8.90	910.19	6.87	908.81	3.11	897.46
17-Apr-13	5.81	934.84	2.87	912.87	NMWL		13.55	933.49	12.80	916.15	6.10	926.81	NMWL		8.50	910.59	NMWL		2.91	897.66
23-Oct-13	NMWL		3.44	912.30	NMWL		13.97	933.07	13.60	915.35	6.35	926.56	NMWL		9.01	910.08	NMWL		3.09	897.48
02-Apr-14	4.90	935.75	3.98	911.76	NMWL		11.00	936.04	13.66	915.29	5.75	927.16	NMWL		9.04	910.05	NMWL		3.20	897.37
02-Jun-14	NMWL		3.96	911.78	NMWL															
21-Oct-14	NMWL		3.81	911.93	NMWL		11.41	935.63	13.13	915.82	6.01	926.90	NMWL		8.89	910.20	NMWL		2.97	897.60
21-Apr-15	NMWL		3.56	912.18	NMWL		14.98	932.06	13.19	915.76	6.26	926.65	NMWL		9.06	910.03	NMWL		3.27	897.30
13-Oct-15	NMWL		3.34	912.40	NMWL		12.18	934.86	13.30	915.65	6.30	926.61	NMWL		8.35	910.74	NMWL		3.06	897.51
15-May-17	6.36	934.30	3.37	912.38	NMWL		11.88	935.16	13.09	915.86	6.58	926.34	NMWL		7.45	911.64	NMWL		3.05	897.52
13-Nov-17	NMWL		3.80	911.94	NMWL		12.15	934.89	13.84	915.11	6.63	926.28	NMWL		8.70	910.39	NMWL		3.29	897.28
29-May-18	NMWL		4.19	911.55	NMWL		12.38	934.66	13.99	914.96	6.83	926.08	NMWL		9.84	909.25	NMWL		3.50	897.07
13-Nov-18	NMWL		3.80	911.94	NMWL		12.15	934.89	13.84	915.11	6.63	926.28	NMWL		8.70	910.39	NMWL		3.29	897.28
06-May-19	NMWL		4.05	911.69	NMWL		13.31	933.73	13.48	915.47	6.13	926.78	NMWL		9.45	909.64	NMWL		3.20	897.37
19-Nov-19	NMWL		4.58	911.16	NMWL		14.25	932.79	14.21	914.74	6.86	926.05	NMWL		9.95	909.14	NMWL		3.36	897.21

				Sample ID	MB5	MB9	MB10	MB12	MB14	MB6B
			c	ample Date			19/11/2019	19/11/2019	19/11/2019	19/11/2019
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS	PS
Physical Parameters	pH (Lab)	0	No unit	6.0 - 8.5	6.4	6.1	6	5.2	7	6.3
,	Electrical Conductivity (Lab)	2	μS/cm	4478	1100	440	220	1100	770	1300
	Total Dissolved Solids	10	mg/L	-	550	210	92	630	390	630
	Chemical Oxygen Demand	10	mg/L	-	23	13	< 10	18	< 10	39
Alkalinity	Bicarbonate Alkalinity as CaCO3	5	mg/L	-	160	120	55	38	290	350
	Total Alkalinity as CaCO3	5	mg/L	350	160	120	55	38	290	350
Anions	Chloride	0.05	mg/L	350	190	58	20	230	33	170
	Fluoride	0.1	mg/L	1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Sulfate (SO4)	1	mg/L	-	20	18	16	89	47	32
Cations	Calcium (Ca)	0.1	mg/L	1000	55	24	13	34	92	74
	Magnesium (Mg)	0.1	mg/L	-	18	15	9.7	25	29	64
	Potassium (K)	0.2	mg/L	-	36	9.9	2.9	9.7	8.8	14
	Sodium (Na)	0.1	mg/L	230	84	33	9.8	79	19	68
Forms of Carbon	Total Organic Carbon	0.2	mg/L	-	5.6	2.6	1	4.7	3.4	7.4
Nutrients	Ammonia (NH3) as N	0.005	mg/L	-	2.2	2.7	0.22	3.2	0.22	0.84
	Nitrate (NO3) as N	0.005	mg/L	-	3.9	< 0.005	0.13	< 0.005	< 0.005	< 0.005
T	Total Phosphorus	0.02	mg/L	0.05	0.16	0.05	0.05	< 0.02	< 0.02	0.48
Trace Metals	Chromium (Cr)	0.001	mg/L	-	0.003	0.003	< 0.001	< 0.001	< 0.001	0.005
	Aluminium (Al)	0.005	mg/L	5 0.2	< 0.005	< 0.005	< 0.005 0.73	0.44 41	< 0.005 1.1	< 0.005
	Iron (Fe) Manganese (Mn)	0.005	mg/L	0.2	0.016 0.96	7.8 1.3	0.73	2.2	0.083	0.01
	Hexavalent Chromium (Cr-VI)	0.001	mg/L mg/L	0.2	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	3.6 < 0.004
Phenolics	Total Phenois	0.004	mg/L	-	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
OC Pesticides	Aldrin	0.01	μg/L	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
oc. esticaes	Alpha BHC	0.1	μg/L μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha Chlordane	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha Endosulfan	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Beta BHC	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Beta Endosulfan	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Delta BHC	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Dieldrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endosulfan sulphate	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin aldehyde	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin ketone	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Heptachlor	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Heptachlor epoxide	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Hexachlorobenzene (HCB)	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Lindane (gamma BHC)	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Methoxychlor	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDD	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDE	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDT	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDD	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDT	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDE	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Gamma Chlordane	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	trans-Nonachlor Isodrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
	Mirex	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OP Pesticides	Azinphos-methyl	0.1	μg/L μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Oi i caudues	Bromophos Ethyl	0.2	μg/L μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	μg/L μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Diazinon (Dimpylate)	0.5	μg/L μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dichlorvos	0.5	μg/L μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dimethoate	0.5	μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Ethion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Fenitrothion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Malathion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Parathion-ethyl (Parathion)	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Methidathion	0.5	μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Petroleum Hydrocarbons	TRH C6-C9	40	μg/L	-	< 40	< 40	< 40	130	< 40	< 40
	TRH C10-C14	50	μg/L	-	< 50	< 50	< 50	< 50	< 50	< 50
	TRH C15-C28	200	μg/L	-	< 200	< 200	< 200	< 200	< 200	< 200
	TRH C29-C36	200	μg/L	-	< 200	< 200	< 200	< 200	< 200	< 200
	TRH C10-C36	450	μg/L	-	< 450	< 450	< 450	< 450	< 450	< 450
	TRH C37-C40	200	μg/L	-	< 200	< 200	< 200	< 200	< 200	< 200
Total Recoverable Hydrocarbons	TRH C6-C10	50	μg/L	-	< 50	< 50	< 50	130	< 50	< 50
	TRH C6-C10 minus BTEX (F1)	50	μg/L	-	< 50	< 50	< 50	130	< 50	< 50
	TRH >C10-C16	60	μg/L	-	< 60	< 60	< 60	< 60	< 60	< 60
	TRH >C10-C16 minus Naphthalene (F2)	60	μg/L	-	< 60	< 60	< 60	< 60	< 60	< 60
	TRH >C16-C34 (F3)	500	μg/L	-	< 500	< 500	< 500	< 500	< 500	< 500
	TRH >C34-C40 (F4)	500	μg/L	-	< 500	< 500	< 500	< 500	< 500	< 500
	TRH C10-C40	650	μg/L	-	< 650	< 650	< 650	< 650	< 650	< 650
BTEXN Analytes	Benzene (F0)	0.5	μg/L	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

milligrams per litre micrograms per litre
microsiemens per centimetre
limit of reporting
primary sample μg/L μS/cm LOR PS

Criteria

Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource
Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water
Quality - 'Primary Industries: Water quality for irrigation and general water use', 2000

within criteria criteria exceeded

TABLE 3: LITHGOW SOLID WASTE FACILITY - RESULTS OF LABORATORY ANALYSIS NOVEMBER 2019

LEACHATE

				Sample ID	LW1
			S	ample Date	19/11/2019
Group	Analyte	LOR	Units	Criteria	PS
Physical Parameters	pH (Lab)	0	No unit	6.0 - 8.5	6.7
	Electrical Conductivity (Lab)	2	μS/cm	4478	1000
	Chemical Oxygen Demand	10	mg/L	-	12
	Biochemical Oxygen Demand (BOD5)	5	mg/L	-	< 5
Alkalinity	Bicarbonate Alkalinity as CaCO3	5	mg/L	-	99
	Total Alkalinity as CaCO3	5	mg/L	350	99
Anions	Chloride	1	mg/L	350	220
	Fluoride	0.1	mg/L	1	0.17
	Sulfate (SO4)	1	mg/L	-	23
Cations	Calcium (Ca)	0.1	mg/L	1000	52
	Magnesium (Mg)	0.1	mg/L	-	18
	Potassium (K)	0.2	mg/L	-	16
	Sodium (Na)	0.1	mg/L	230	100
Forms of Carbon	Total Organic Carbon	0.2	mg/L	-	4.3
Nutrients	Ammonia (NH3) as N	0.01	mg/L	-	0.18
	Nitrate (NO3) as N	0.005	mg/L	-	0.46
	Total Kjeldahl Nitrogen	0.05	mg/L	-	0.57
Trace Metals	Iron (Fe)	0.005	mg/L	0.2	0.7
	Manganese (Mn)	0.001	mg/L	0.2	0.78
Phenolics	Total Phenols	0.01	mg/L	-	0.01

mg/L milligrams per litre µg/L micrograms per litre

 $\mu S/cm$ microsiemens per centimetre

LOR limit of reporting PS primary sample

Criteria Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for

Fresh and Marine Water Quality - 'Primary Industries: Water quality for irrigation and general water use', 2000

within criteria criteria exceeded

TABLE 4: LITHGOW SOLID WASTE FACILITY - ACCUMULATED LANDFILL GAS MONITORING METHANE (as %, v/v)

		Date	30/01/2019	19/02/2019	28/03/2019	04/04/2019	06/05/2019	06/06/2019	10/07/2019	19/08/2019	02/09/2019	09/10/2019	19/11/2019
Location	LOR	Units											
Site Shed	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Weighbridge	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Office (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Green Shed (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Pump Room (STP)	0.005	%	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

LOR limit of reporting

CLIENT DETAILS -

LABORATORY DETAILS

Date Received

Brendan Stuart Contact

PREMISE Client

Address LEVEL 1

100 BRUNSWICK STREET

FORTITUDE VALLEY QLD 4006

Telephone 61 2 6939 5000

(Not specified) Facsimile

Brendan.stuart@premise.com.au Email

(Not specified)

Project 217500-Lithgow SWF

6 Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone +61 2 8594 0400

+61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com Fmail

21 Nov 2019

SGS Reference SE200192 R0

02 Dec 2019 Date Reported

COMMENTS

Order Number

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheegar BENIAMEEN

Chemist

Dong LIANG

Metals/Inorganics Team Leader

Kamrul AHSAN Senior Chemist

Ly Kim HA

Organic Section Head

Kinly

Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia

t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

SE200192 R0

	\$	Sample Number Sample Matrix Sample Date Sample Name		SE200192.002 Water 19 Nov 2019 MB6B	SE200192.003 Water 19 Nov 2019 MB9	SE200192.004 Water 19 Nov 2019 MB10
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 26/	11/2019				
TRH C6-C10	μg/L	50	<50	<50	<50	<50
TRH C6-C9	μg/L	40	<40	<40	<40	<40
Surrogates	10					
d4-1,2-dichloroethane (Surrogate)	%		101	108	105	108
d8-toluene (Surrogate)	%		100	102	103	105
Bromofluorobenzene (Surrogate)	%	_	92	96	95	97
VPH F Bands	70		92	90	80	91
Benzene (F0)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50
TRH (Total Recoverable Hydrocarbons) in Water Method: AN	1403 Teste	ed: 21/11/2019				
TRH C10-C14	μg/L	50	<50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200	<200
TRH C10-C36	μg/L	450	<450	<450	<450	<450
TRH C10-C40	μg/L	650	<650	<650	<650	<650
TRH F Bands	<u>'</u>	'				
TRH >C10-C16	μg/L	60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500	<500
OC Pesticides in Water Method: AN420 Tested: 21/11/2019						
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin		0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDD	μg/L		<0.1	<0.1	<0.1	<0.1
	μg/L	0.1				
o,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	μg/L	0.1	<0.1	<0.1	<0.1	<0.1
Mirex	μg/L	0.1	<0.1	<0.1	<0.1	<0.1

02-December-2019 Page 2 of 17

Total Alkalinity as CaCO3

ANALYTICAL REPORT

SE200192 R0

	Sá :	nple Number ample Matrix Sample Date ample Name	SE200192.001 Water 19 Nov 2019 MB5	SE200192.002 Water 19 Nov 2019 MB6B	SE200192.003 Water 19 Nov 2019 MB9	SE200192.004 Water 19 Nov 2019 MB10
Parameter	Units	LOR				
OC Pesticides in Water Method: AN420 Tested: 21/11/2019 Surrogates	(continued)					
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	45	40	33	47
OP Pesticides in Water Method: AN420 Tested: 21/11/2019						
Dichlorvos	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5	<0.5	<0.5
Ethion	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2	<0.2
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	56	46	40	42
d14-p-terphenyl (Surrogate)	%	-	80	64	54	58
Total Phenolics in Water Method: AN289 Tested: 25/11/2019						
Total Phenols	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
	ested: 22/11/20)19				
Fluoride	mg/L	0.1	<0.10	<0.10	<0.10	<0.10
Chloride	mg/L	0.05	190	170	58	20
Nitrate Nitrogen, NO3-N	mg/L	0.005	3.9	<0.005	<0.005	0.13
Sulfate, SO4	mg/L	1	20	32	18	16
Alkalinity Method: AN135 Tested: 22/11/2019						
Bicarbonate Alkalinity as CaCO3	mg/L	5	160	350	120	55

mg/L

5

160

350

120

55

02-December-2019 Page 3 of 17

SE200192 R0

	\$	mple Numbe Sample Matrix Sample Date Sample Name	x Water e 19 Nov 2019	SE200192.002 Water 19 Nov 2019 MB6B	SE200192.003 Water 19 Nov 2019 MB9	SE200192.004 Water 19 Nov 2019 MB10
Parameter	Units	LOR				
Ammonia Nitrogen by Discrete Analyser (Aquakem) Method:	AN291 Tes	sted: 22/11/	2019			
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	2.2	0.84	2.7	0.22
Total Phosphorus by Kjeldahl Digestion DA in Water Method:	AN279/AN29	93(Sydney o	only) Tested: 22	2/11/2019		
Total Phosphorus (Kjeldahl Digestion) as P	mg/L	0.02	0.16	0.48	0.05	0.05
pH in water Method: AN101 Tested: 21/11/2019	No unit	-	6.4	6.3	6.1	6.0
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 21	/11/2019				
Conductivity @ 25 C	μS/cm	2	1100	1300	440	220
Total Dissolved Solids (TDS) in water Method: AN113 Tester	d: 26/11/201 9	9				
Total Dissolved Solids Dried at 175-185°C	mg/L	10	550	630	210	92
COD in Water Method: AN179/AN181 Tested: 27/11/2019						
Chemical Oxygen Demand	mg/L	10	23	39	13	<10

02-December-2019 Page 4 of 17

SE200192 R0

	Si	nple Number ample Matrix Sample Date ample Name	SE200192.001 Water 19 Nov 2019 MB5	SE200192.002 Water 19 Nov 2019 MB6B	SE200192.003 Water 19 Nov 2019 MB9	SE200192.004 Water 19 Nov 2019 MB10
Parameter	Units	LOR				
Forms of Carbon Method: AN190 Tested: 25/11/2019						
Total Organic Carbon as NPOC	mg/L	0.2	5.6	7.4	2.6	1.0
Hexavalent Chromium in water by Discrete Analyser Method: A Hexavalent Chromium, Cr6+	M283 Tes	0.004	<0.004	<0.004	<0.004	<0.004
	ted: 22/11/20	19				
Calcium, Ca						
Calcium, Ca	mg/L	0.1	55	74	24	13
Magnesium, Mg	mg/L mg/L	0.1	55 18	74 64	24 15	13 9.7
Magnesium, Mg	mg/L	0.1	18	64	15	9.7
Magnesium, Mg Potassium, K Sodium, Na	mg/L mg/L	0.1 0.2 0.1	18	64 14	15 9.9	9.7 2.9
Magnesium, Mg Potassium, K Sodium, Na	mg/L mg/L mg/L	0.1 0.2 0.1	18	64 14	15 9.9	9.7 2.9
Magnesium, Mg Potassium, K Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L mg/L Tested: 22/1	0.1 0.2 0.1 1/2019	18 36 84	64 14 68	15 9.9 33	9.7 2.9 9.8
Magnesium, Mg Potassium, K Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al	mg/L mg/L mg/L Tested: 22/1	0.1 0.2 0.1 1/2019	18 36 84	64 14 68	15 9.9 33	9.7 2.9 9.8
Magnesium, Mg Potassium, K Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Aluminium, Al Iron, Fe	mg/L mg/L mg/L Tested: 22/1 μg/L μg/L	0.1 0.2 0.1 1/2019 5 5	18 36 84 <5 16	64 14 68 <5 10	15 9.9 33 <5 7800	9.7 2.9 9.8 <5 730

02-December-2019 Page 5 of 17

	Sa S	nple Number ample Matrix Sample Date ample Name	SE200192.005 Water 19 Nov 2019 MB12	SE200192.006 Water 19 Nov 2019 MB14
Parameter	Units	LOR		
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 26/11/			
TRH C6-C10	μg/L	50	130	<50
TRH C6-C9	µg/L	40	130	<40
Surrogates				
d4-1,2-dichloroethane (Surrogate)	%	_	108	112
d8-toluene (Surrogate)	%	-	104	108
Bromofluorobenzene (Surrogate)	%	-	95	100
VPH F Bands				
Benzene (F0)	μg/L	0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	μg/L	50	130	<50
TRH (Total Recoverable Hydrocarbons) in Water Method: AN	403 Tested:	21/11/2019		
TRH C10-C14	μg/L	50	<50	<50
TRH C15-C28	μg/L	200	<200	<200
TRH C29-C36	μg/L	200	<200	<200
TRH C37-C40	μg/L	200	<200	<200
TRH C10-C36	μg/L	450	<450	<450
TRH C10-C40	μg/L	650	<650	<650
TRH F Bands				
TRH >C10-C16	μg/L	60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	μg/L	60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500
OC Pesticides in Water Method: AN420 Tested: 21/11/2019				
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1	<0.1 <0.1
Heptachlor Aldrin	μg/L μg/L	0.1	<0.1	<0.1
Beta BHC	µg/L	0.1	<0.1	<0.1
Delta BHC	µg/L	0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1	<0.1
Gamma Chlordane	μg/L	0.1	<0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1	<0.1
p,p'-DDE	μg/L	0.1	<0.1	<0.1
Dieldrin	μg/L	0.1	<0.1	<0.1
Endrin	μg/L	0.1	<0.1	<0.1
o,p'-DDD	μg/L	0.1	<0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1	<0.1
Beta Endosulfan p,p'-DDD	µg/L µg/L	0.1	<0.1	<0.1
p,p-DDT	µg/L µg/L	0.1	<0.1	<0.1
p,p-טטו Endosulfan sulphate	µg/L µg/L	0.1	<0.1	<0.1
Endrin aldehyde	μg/L	0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1
Isodrin	μg/L	0.1	<0.1	<0.1
Mirex	μg/L	0.1	<0.1	<0.1

02-December-2019 Page 6 of 17

Bicarbonate Alkalinity as CaCO3

Total Alkalinity as CaCO3

ANALYTICAL REPORT

SE200192 R0

	Sa	nple Number ample Matrix Sample Date ample Name	SE200192.005 Water 19 Nov 2019 MB12	SE200192.0 Water 19 Nov 20 ⁷ MB14
Parameter	Units	LOR		
OC Pesticides in Water Method: AN420 Tested: 21/11/2019	(continued)	ı		
Surrogates				
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	87	80
OP Pesticides in Water Method: AN420 Tested: 21/11/2019				
Dichlorvos	μg/L	0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5
Ethion	μg/L	0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2
Surrogates				
2-fluorobiphenyl (Surrogate)	%	-	50	56
d14-p-terphenyl (Surrogate)	%	-	68	78
Total Phenolics in Water Method: AN289 Tested: 25/11/2019				
Total Phenois	mg/L	0.01	<0.01	<0.01
Anions by Ion Chromatography in Water Method: AN245 Te	sted: 22/11/20	019		
Fluoride	mg/L	0.1	<0.10	<0.10
Chloride	mg/L	0.05	230	33
Nitrate Nitrogen, NO3-N	mg/L	0.005	<0.005	<0.005
	mg/L	1	89	47

02-December-2019 Page 7 of 17

5

mg/L

mg/L

290

SE200192 R0

	s	nple Number ample Matrix Sample Date Sample Name	SE200192.005 Water 19 Nov 2019 MB12	SE200192.006 Water 19 Nov 2019 MB14
Parameter	Units	LOR		
Ammonia Nitrogen by Discrete Analyser (Aquakem) Method	I: AN291 Tes	ted: 22/11/20)19	
Ammonia Nitrogen, NH₃ as N	mg/L	0.005	3.2	0.22
Total Phosphorus by Kjeldahl Digestion DA in Water Total Phosphorus (Kjeldahl Digestion) as P Method	d: AN279/AN29	3(Sydney or	rolly) Tested: 22/ <0.02	11/2019 <0.02
pH in water Method: AN101 Tested: 21/11/2019				
pH**	No unit	-	5.2	7.0
Conductivity and TDS by Calculation - Water Method: AN10	6 Tested: 21/	11/2019		
Conductivity @ 25 C	μS/cm	2	1100	770
	μS/cm		1100	770
, ,			630	770 390
Total Dissolved Solids (TDS) in water Method: AN113 Test	ted: 26/11/2019			

02-December-2019 Page 8 of 17

Total Chromium

ANALYTICAL REPORT

SE200192 R0

	s	mple Number ample Matrix Sample Date Sample Name	SE200192.005 Water 19 Nov 2019 MB12	SE200192.006 Water 19 Nov 2019 MB14	
Parameter	Units	LOR			
Forms of Carbon Method: AN190 Tested: 25/11/2019					
Total Organic Carbon as NPOC	mg/L	0.2	4.7	3.4	
Hexavalent Chromium in water by Discrete Analyser Method	: AN283 Tes	sted: 22/11/2	019		
Hexavalent Chromium, Cr6+	mg/L	0.004	<0.004	<0.004	
Metals in Water (Dissolved) by ICPOES Method: AN320 To	mg/L ested: 22/11/20		<0.004	<0.004	
Metals in Water (Dissolved) by ICPOES Method: AN320 To	ested: 22/11/20)19			
Metals in Water (Dissolved) by ICPOES Method: AN320 To Calcium, Ca Magnesium, Mg Potassium, K	ested: 22/11/20	0.1	34	92	
Metals in Water (Dissolved) by ICPOES Method: AN320 To Calcium, Ca Magnesium, Mg Potassium, K	mg/L	0.1 0.1	34 25	92 29	
Metals in Water (Dissolved) by ICPOES Method: AN320 To Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na	mg/L mg/L mg/L	0.1 0.1 0.2 0.1	34 25 9.7	92 29 8.8	
Metals in Water (Dissolved) by ICPOES Method: AN320 To Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L mg/L mg/L mg/L	0.1 0.1 0.2 0.1	34 25 9.7	92 29 8.8	
Metals in Water (Dissolved) by ICPOES Method: AN320 To Calcium, Ca Magnesium, Mg Potassium, K Sodium, Na	mg/L mg/L mg/L mg/L Tested: 22/	0.1 0.1 0.1 0.2 0.1 11/2019	34 25 9.7 79	92 29 8.8 19	

μg/L

<1

02-December-2019 Page 9 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Bicarbonate Alkalinity as CaCO3	LB188232	mg/L	5	<5	4%	NA
Total Alkalinity as CaCO3	LB188232	mg/L	5	<5	4%	112%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
J		Reference					%Recovery	%Recovery
ı	Ammonia Nitrogen, NH₃ as N	LB188208	mg/L	0.005	<0.005	1 - 4%	100%	100%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Fluoride	LB188213	mg/L	0.1	<0.10	1%	104%
Chloride	LB188213	mg/L	0.05	<0.05	0%	93%
Nitrate Nitrogen, NO3-N	LB188213	mg/L	0.005	<0.005	3%	98%
Sulfate, SO4	LB188213	mg/L	1	<1.0	0%	94%

COD in Water Method: ME-(AU)-[ENV]AN179/AN181

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
п		Reference					%Recovery
ı	Chemical Oxygen Demand	LB188484	mg/L	10	<10	0%	83%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
		Reference					%Recovery
ı	Conductivity @ 25 C	LB188133	μS/cm	2	<2	0%	95%

Forms of Carbon Method: ME-(AU)-[ENV]AN190

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
1		Reference					%Recovery	%Recovery
-1	Total Organic Carbon as NPOC	LB188296	mg/L	0.2	<0.2	2%	92%	98%

02-December-2019 Page 10 of 17

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB188207	mg/L	0.004	<0.004	0%	104%	95%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB188190	mg/L	0.1	<0.1	0%	98%	85%
Magnesium, Mg	LB188190	mg/L	0.1	<0.1	1%	99%	
Potassium, K	LB188190	mg/L	0.2	<0.2	0%	92%	
Sodium, Na	LB188190	mg/L	0.1	<0.1	0%	99%	

OC Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Hexachlorobenzene (HCB)	LB188160	μg/L	0.1	<0.1	NA
Alpha BHC	LB188160	μg/L	0.1	<0.1	NA
Lindane (gamma BHC)	LB188160	μg/L	0.1	<0.1	NA
Heptachlor	LB188160	μg/L	0.1	<0.1	90%
Aldrin	LB188160	μg/L	0.1	<0.1	75%
Beta BHC	LB188160	μg/L	0.1	<0.1	NA
Delta BHC	LB188160	μg/L	0.1	<0.1	100%
Heptachlor epoxide	LB188160	μg/L	0.1	<0.1	NA
o,p'-DDE	LB188160	μg/L	0.1	<0.1	NA
Alpha Endosulfan	LB188160	μg/L	0.1	<0.1	NA
Gamma Chlordane	LB188160	μg/L	0.1	<0.1	NA
Alpha Chlordane	LB188160	μg/L	0.1	<0.1	NA
trans-Nonachlor	LB188160	μg/L	0.1	<0.1	NA
p,p'-DDE	LB188160	μg/L	0.1	<0.1	NA
Dieldrin	LB188160	μg/L	0.1	<0.1	95%
Endrin	LB188160	μg/L	0.1	<0.1	90%
o,p'-DDD	LB188160	μg/L	0.1	<0.1	NA
o,p'-DDT	LB188160	μg/L	0.1	<0.1	NA
Beta Endosulfan	LB188160	μg/L	0.1	<0.1	NA
p,p'-DDD	LB188160	μg/L	0.1	<0.1	NA
p,p'-DDT	LB188160	μg/L	0.1	<0.1	70%
Endosulfan sulphate	LB188160	μg/L	0.1	<0.1	NA
Endrin aldehyde	LB188160	μg/L	0.1	<0.1	NA
Methoxychlor	LB188160	μg/L	0.1	<0.1	NA
Endrin ketone	LB188160	μg/L	0.1	<0.1	NA
Isodrin	LB188160	μg/L	0.1	<0.1	NA
Mirex	LB188160	μg/L	0.1	<0.1	NA

Surrogates

Parameter	QC Units		LOR	MB	LCS
	Reference				%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB188160	%	-	45%	59%

02-December-2019 Page 11 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
Dichlorvos	LB188160	μg/L	0.5	<0.5	91%
Dimethoate	LB188160	μg/L	0.5	<0.5	NA
Diazinon (Dimpylate)	LB188160	μg/L	0.5	<0.5	95%
Fenitrothion	LB188160	μg/L	0.2	<0.2	NA
Malathion	LB188160	μg/L	0.2	<0.2	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB188160	μg/L	0.2	<0.2	98%
Parathion-ethyl (Parathion)	LB188160	μg/L	0.2	<0.2	NA
Bromophos Ethyl	LB188160	μg/L	0.2	<0.2	NA
Methidathion	LB188160	μg/L	0.5	<0.5	NA
Ethion	LB188160	μg/L	0.2	<0.2	93%
Azinphos-methyl	LB188160	μg/L	0.2	<0.2	NA

Surrogates

Parameter	QC	Units	LOR	MB	LCS
	Reference				
2-fluorobiphenyl (Surrogate)	LB188160	%	-	52%	60%
d14-p-terphenyl (Surrogate)	LB188160	%	-	68%	64%

pH in water Method: ME-(AU)-[ENV]AN101

F	Parameter	QC Units		LOR	DUP %RPD	LCS
		Reference				%Recovery
	pH**	LB188133	No unit	-	1%	100%

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Dissolved Solids Dried at 175-185°C	LB188403	mg/L	10	<10	2%	83%

02-December-2019 Page 12 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Total Phenolics in Water Method: ME-(AU)-[ENV]AN289

	Parameter	QC	Units	LOR	MB	LCS	MS
Ш		Reference				%Recovery	%Recovery
	Total Phenols	LB188302	mg/L	0.01	<0.01	95%	81%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
ı		Reference					%Recovery	%Recovery
ı	Total Phosphorus (Kjeldahl Digestion) as P	LB188204	mg/L	0.02	<0.02	6%	105%	107%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC	Units	LOR	MB	LCS	MS
	Reference				%Recovery	%Recovery
Aluminium, Al	LB188192	μg/L	5	<5	106%	103%
Iron, Fe	LB188192	μg/L	5	<5	115%	109%
Manganese, Mn	LB188192	μg/L	1	<1	112%	72%

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/AN318

ĺ	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
Ш		Reference					%Recovery
	Total Chromium	LB188195	μg/L	1	<1	0%	NA

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	LCS %Recovery
TRH C10-C14	LB188160	μg/L	50	<50	81%
TRH C15-C28	LB188160	μg/L	200	<200	90%
TRH C29-C36	LB188160	μg/L	200	<200	92%
TRH C37-C40	LB188160	μg/L	200	<200	NA
TRH C10-C36	LB188160	μg/L	450	<450	NA
TRH C10-C40	LB188160	μg/L	650	<650	NA

TRH F Bands

Title Ballac					
Parameter	QC	Units	LOR	MB	LCS
	Reference				%Recovery
TRH >C10-C16	LB188160	μg/L	60	<60	87%
TRH >C10-C16 - Naphthalene (F2)	LB188160	μg/L	60	<60	NA
TRH >C16-C34 (F3)	LB188160	μg/L	500	<500	98%
TRH >C34-C40 (F4)	LB188160	μg/L	500	<500	83%

02-December-2019 Page 13 of 17

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB188414	μg/L	50	<50	0 - 21%	94%	92%
TRH C6-C9	LB188414	μg/L	40	<40	0 - 15%	95%	94%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
d4-1,2-dichloroethane (Surrogate)	LB188414	%	-	96%	14 - 15%	96%	88%
d8-toluene (Surrogate)	LB188414	%	-	104%	5 - 18%	107%	90%
Bromofluorobenzene (Surrogate)	LB188414	%	-	93%	3 - 8%	110%	85%

VPH F Bands

VIIII Dands							
Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Benzene (F0)	LB188414	μg/L	0.5	<0.5	0%	NA	NA
TRH C6-C10 minus BTEX (F1)	LB188414	μg/L	50	<50	0 - 21%	92%	93%

02-December-2019 Page 14 of 17

SGS

METHOD SUMMARY

METHOD	METHODOLOGY SLIMMARY
merrios	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN022	The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.
AN022/AN318	Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN113	The Total Dissolved Solids residue may also be ignited at 550 C and volatile TDS (Organic TDS) and non-volatile TDS (Inorganic) can be determined.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN181	Analysis of COD by Semi Closed Reflux: The sample is refluxed with strong acid and a known excess of oxidant. After digestion the unreduced oxidant is back titrated to determine the amount of oxidant consumed. The chemically oxidised matter is calculated in terms of oxygen equivalents. Reference APHA 5220 B.
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.

02-December-2019 Page 15 of 17

SGS

METHOD SUMMARY

METHOD —	METHODOLOGY SUMMARY
	WETHODOLOGT SUMMART
AN283	Hexavalent Chromium via Aquakem DA: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC`s are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

02-December-2019 Page 16 of 17

FOOTNOTES _

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte NVL Not Validated

INVL NOL VAIIDALED

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sqs.com.au.pv.sqsvr/en-qb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

02-December-2019 Page 17 of 17

Address

Email

CLIENT DETAILS -

LABORATORY DETAILS

Brendan Stuart Contact

PREMISE Client

Address LEVEL 1

100 BRUNSWICK STREET

FORTITUDE VALLEY QLD 4006

61 2 6939 5000

Telephone (Not specified) Facsimile

Brendan.stuart@premise.com.au Email

(Not specified)

Project 217500-Lithgow SWF

Samples

Huong Crawford Manager

SGS Alexandria Environmental Laboratory

Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone +61 2 8594 0400

+61 2 8594 0499 Facsimile

au.environmental.sydney@sgs.com

SGS Reference SE200193 R0 21 Nov 2019 Date Received 28 Nov 2019 Date Reported

COMMENTS

Order Number

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Total and Volatile Suspended Solids and Total Dissolvable Solids could not be tested due to insufficient sample .

SIGNATORIES

Dong LIANG

Metals/Inorganics Team Leader

Kamrul AHSAN Senior Chemist Shane MCDERMOTT Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC

Alexandria NSW 2015 Alexandria NSW 2015 Australia Australia t +61 2 8594 0400 f+61 2 8594 0499 www.sgs.com.au

SE200193 R0

		ample Number Sample Matrix Sample Date Sample Name	SE200193.001 Water 19 Nov 2019 LW1
Parameter	Units	LOR	

Total Phenolics in Water Method: AN289 Tested: 28/11/2019

Total Phenois	mg/L	0.01	0.01

Anions by Ion Chromatography in Water Method: AN245 Tested: 22/11/2019

Fluoride	mg/L	0.1	0.17
Chloride	mg/L	1	220
Nitrate Nitrogen, NO3-N	mg/L	0.005	0.46
Sulfate, SO4	mg/L	1	23

Alkalinity Method: AN135 Tested: 22/11/2019

Bicarbonate Alkalinity as CaCO3	mg/L	5	99
Total Alkalinity as CaCO3	mg/L	5	99

TKN Kjeldahl Digestion by Discrete Analyser Method: AN281/AN292(Sydney only) Tested: 22/11/2019

Total Kjeldahl Nitrogen	mg/L	0.05	0.57
-------------------------	------	------	------

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: AN291 Tested: 22/11/2019

Ammonia Nitrogen, NH ₃ as N mg/L	0.01	0.18
---	------	------

pH in water Method: AN101 Tested: 22/11/2019

- 1				
- 1	nH**	No unit		67
- 1	pπ	No unit	-	0.7

28-November-2019 Page 2 of 9

SE200193 R0

	S	ample Matrix Sample Date Sample Name	Water 19 Nov 2019 LW1
Parameter	Units	LOR	
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 22	/11/2019	
Conductivity @ 25 C	μS/cm	2	1000
Total Dissolved Solids (TDS) in water Method: AN113 Teste Total Dissolved Solids Dried at 175-185°C	d: 26/11/2019	10	IS
Total Dissolved Golids Diled at 110 100 G	mg/L	10	10
Total and Volatile Suspended Solids (TSS / VSS) Method: AN1	14 Tested:	26/11/2019	
Total Suspended Solids Dried at 103-105°C	mg/L	5	IS
Forms of Carbon Method: AN190 Tested: 26/11/2019			
Total Organic Carbon as NPOC	mg/L	0.2	4.3
BOD5 Method: AN183 Tested: 22/11/2019			
Biochemical Oxygen Demand (BOD5)	mg/L	5	<5
COD in Water Method: AN179/AN181 Tested: 27/11/2019			
Chemical Oxygen Demand	mg/L	10	12

28-November-2019 Page 3 of 9

SE200193 R0

	5	mple Number Sample Matrix Sample Date Sample Name	SE200193.001 Water 19 Nov 2019 LW1
Parameter	Units	LOR	

Oil and Grease in Water Method: AN185 Tested: 26/11/2019

Oil and Grease	ma/L	5	IS
Oil and Grease	mg/L	5	15

Metals in Water (Total) by ICPOES Method: AN022/AN320 Tested: 22/11/2019

Total Calcium	mg/L	0.1	52
Total Magnesium	mg/L	0.1	18
Total Potassium	mg/L	0.2	16
Total Sodium	mg/L	0.1	100

Trace Metals (Total) in Water by ICPMS Method: AN022/AN318 Tested: 22/11/2019

Total Iron	μg/L	5	700
Total Manganese	μg/L	1	780

28-November-2019 Page 4 of 9

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Bicarbonate Alkalinity as CaCO3	LB188232	mg/L	5	<5	4%	NA
Total Alkalinity as CaCO3	LB188232	mg/L	5	<5	4%	112%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Ammonia Nitrogen, NH₃ as N	LB188208	mg/L	0.01	<0.01	1 - 4%	100%	100%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Fluoride	LB188213	mg/L	0.1	<0.10	1%	104%
Chloride	LB188213	mg/L	1	<0.05	0%	93%
Nitrate Nitrogen, NO3-N	LB188213	mg/L	0.005	<0.005	3%	98%
Sulfate, SO4	LB188213	mg/L	1	<1.0	0%	94%

BOD5 Method: ME-(AU)-[ENV]AN183

	Parameter	QC Reference	Units	LOR	DUP %RPD
ı	Biochemical Oxygen Demand (BOD5)	LB188263	mg/L	5	0%

COD in Water Method: ME-(AU)-[ENV]AN179/AN181

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
П		Reference					%Recovery
ı	Chemical Oxygen Demand	LB188484	mg/L	10	<10	0%	83%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
		Reference					%Recovery
-1	Conductivity @ 25 C	LB188282	μS/cm	2	<2	0%	96%

28-November-2019 Page 5 of 9

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Forms of Carbon Method: ME-(AU)-[ENV]AN190

I	Parameter	QC	Units	LOR	MB	LCS	MS
J		Reference				%Recovery	%Recovery
ı	Total Organic Carbon as NPOC	LB188407	mg/L	0.2	<0.2	92%	97%

Metals in Water (Total) by ICPOES Method: ME-(AU)-[ENV]AN022/AN320

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Total Calcium	LB188191	mg/L	0.1	<0.1	1%	99%
Total Magnesium	LB188191	mg/L	0.1	<0.1	1 - 2%	100%
Total Potassium	LB188191	mg/L	0.2	<0.2	1 - 5%	93%
Total Sodium	LB188191	mg/L	0.1	<0.1	1 - 5%	101%

pH in water Method: ME-(AU)-[ENV]AN101

Parameter	QC	Units	LOR	DUP %RPD	LCS
	Reference				%Recovery
pH**	LB188282	No unit	-	2%	100%

TKN Kjeldahl Digestion by Discrete Analyser Method: ME-(AU)-[ENV]AN281/AN292(Sydney only)

ı	Parameter	QC	Units	LOR	DUP %RPD	MS
ı		Reference				%Recovery
ı	Total Kjeldahl Nitrogen	LB188204	mg/L	0.05	2%	106%

Total Phenolics in Water Method: ME-(AU)-[ENV]AN289

Para	meter	QC	Units	LOR	MB	LCS
		Reference				%Recovery
Total	Phenols	LB188621	mg/L	0.01	<0.01	98%

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/AN318

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Total Iron	LB188195	μg/L	5	<5	1%	NA
Total Manganese	LB188195	μg/L	1	<1	1%	111%

28-November-2019 Page 6 of 9

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN022	The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.
AN022/AN318	Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN022/AN320	Total (acid soluble) Metals by ICP-OES: Samples are digested in nitric or nitric and hydrochloric acids prior to analysis for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN113	The Total Dissolved Solids residue may also be ignited at 550 C and volatile TDS (Organic TDS) and non-volatile TDS (Inorganic) can be determined.
AN114	Total Suspended and Volatile Suspended Solids: The sample is homogenised by shaking and a known volume is filtered through a pre-weighed GF/C filter paper and washed well with deionised water. The filter paper is dried and reweighed. The TSS is the residue retained by the filter per unit volume of sample. Reference APHA 2540 D. Internal Reference AN114
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN181	Analysis of COD by Semi Closed Reflux: The sample is refluxed with strong acid and a known excess of oxidant. After digestion the unreduced oxidant is back titrated to determine the amount of oxidant consumed. The chemically oxidised matter is calculated in terms of oxygen equivalents. Reference APHA 5220 B.
AN183	BOD: Serial dilutions of the sample are firstly combined with various reagents to aid bacterial growth and the sample is incubated for 5 days at 20°C. The difference between the initial and final oxygen contents of the sample is the amount of oxygen consumed by the bacteria. This is related to the organic loading of the sample therefore cBOD is the measure of the digestibility or bioavailability of organic matter in the sample. Reference APHA 5210 B. Internal Reference AN183

28-November-2019 Page 7 of 9

METHOD SUMMARY

METHOD —	METHODOLOGY SUMMARY
AN185	Gravimetric Oil & Grease and Hydrocarbons: A known volume of sample is extracted using an organic solvent and the solvent layer with dissolved oils and greases is transferred to a pre-weighed beaker. The solvent is evaporated over low heating and the beaker reweighed. The concentration of oil and grease is determined by the increase in mass of the collection beaker per volume of sample extracted. O&G is suitable for lubricating oils and other high boiling point products but is not suitable for volatiles. Reference to APHA 5520 B and USEPA 1664 Revision B. Internal Reference AN185
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN281	An unfiltered water or soil sample is first digested in a block digestor with sulfuric acid, K2SO4 and CuSO4. The ammonia produced following digestion is then measured colourimetrically using the Aquakem 250 Discrete Analyser. A portion of the digested sample is buffered to an alkaline pH, and interfering cations are complexed. The ammonia then reacts with salicylate and hypochlorite to give a blue colour whose absorbance is measured at 660nm and compared with calibration standards. This is proportional to the concentration of Total Kjeldahl Nitrogen in the original sample.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

28-November-2019 Page 8 of 9

FOOTNOTES -

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

 $\begin{array}{cc} \uparrow \downarrow & \text{Raised or Lowered Limit of Reporting} \\ \text{QFH} & \text{QC result is above the upper tolerance} \end{array}$

QFL QC result is below the lower tolerance
- The sample was not analysed for this analyte

NVL Not Validated

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here; www.sqs.com.au.pv.sqsvr/en-qb/environment.

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

28-November-2019 Page 9 of 9