**** 02 6393 5000 02 6393 5050

geolyse.com

Our Ref: 217500_LET_001.docx

6 December 2017

Lithgow City Council PO Box 19. 180 Mort Street Lithgow NSW 2790

ENVIRONMENTAL MONITORING OF LITHGOW SOLID WASTE FACILITY

Geolyse has completed biannual groundwater, leachate and accumulated landfill gas monitoring at Lithgow Solid Waste Facility, located off Geordie Street, Lithgow.

Groundwater Levels

Groundwater was gauged at six (6) groundwater monitoring wells across the site. Groundwater gauging data is included in Table 1 (attached), and elevation trends are shown on Figure 1. No groundwater was recorded in monitoring stations MB1, MB6, MB11 and MB13. Observations were as follows:

- Depths to groundwater ranged from 3.29 metres below ground level (mbgl) at MB14, to 13.84 mbgl at MB9. Corrected groundwater elevations ranged from 897.28 metres Australian Height Datum (mAHD) at MB14, to 934.89 mAHD at MB6B.
- Inference of groundwater elevations, calculated from available survey data from installed groundwater monitoring wells indicate a flow direction to the south-west.

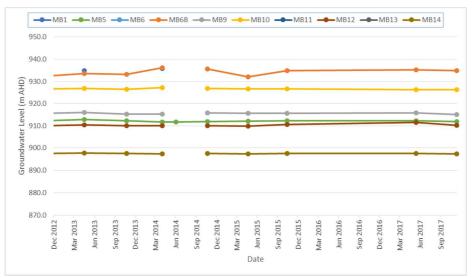


Figure 1: Lithgow Solid Waste Facility - Groundwater Elevations

Groundwater Quality

Groundwater samples were able to be collected from wells MB5, MB6B, MB9, MB10, MB12 and MB14. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Groundwater quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH ranged from 4.0 at MB12 to 6.6 at MB10. Groundwater at MB12 was below the guideline range considered suitable for pumping, irrigation and stock watering (6.0 to 8.5 pH units).
- Electrical conductivity (EC) ranged from 490 μS/cm at piezometer MB9 to 1,200 μS/cm at piezometer MB10.
- Total dissolved solids (TDS) ranged from 230 mg/L at MB9 to 730 mg/L at MB12. TDS concentrations were below the livestock watering 'loss of production' tolerance limit for the most susceptible livestock category, poultry (3000 mg/L ANZECC & ARMCANZ, 2000).
- The chemical oxygen demand (COD) of groundwater samples ranged from 14 mg/L at MB14 to 60 mg/L at MB10.
- Total alkalinity in groundwater ranged from less than the laboratory limit of reporting (LOR) of 5 mg/L at MB10 to 370 mg/L at MB10. Groundwater at MB10 was above the guideline hardness value for potential fouling of waters (350 mg/L).
- Groundwater chloride concentrations ranged from 33 mg/L at MB14 to 260 mg/L at MB12. All
 concentrations were below the guideline value for protection of moderately sensitive crops
 (350 mg/L).
- Fluoride concentrations in groundwater ranged from below the laboratory LOR of 0.1 mg/L at MB5, MB9 and MB10, to 0.14 mg/L at MB12. All concentrations were below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- Sulfate concentrations in groundwater ranged from 7.5mg/L at MB10 to 110 mg/L at MB12.
- Calcium concentrations ranged from 27 mg/L at MB12 to 99 mg/L at MB14.
- Magnesium concentrations ranged from 13 mg/L at MB9 to 54 mg/L at MB6B.
- Potassium concentrations ranged from 9 mg/L at MB14 to 55 mg/L at MB5.
- Concentrations of sodium ranged from 16 mg/L at MB14, to 94 mg/L at MB12. Sodium concentrations were below the guideline level for irrigation to moderately sensitive crops (<230 mg/L).
- Ammonia concentrations in groundwater ranged from 0.24 mgN/L at MB14 to 18 mgN/L at MB10.
- Nitrate concentrations ranged from below the laboratory LOR of 0.005 mgN/L at MB6B, MB9, MB12 and MB14, to 6.2 mgN/L at MB5.

- Phosphorus concentrations in groundwater ranged from below the laboratory LOR of 0.02 mg/L at MB5, MB10, MB12 and MB14, to 0.28 mg/L at MB9. Phosphorus concentrations at MB6B and MB9 were above the guideline value of 0.05 mg/L for long term irrigation use (up to 100 years).
- Aluminium concentrations ranged from below the laboratory LOR of 5 μg/L at all monitoring wells with the exception of MB12, which recorded a concentration of 4,300 μg/L. Aluminium concentrations in groundwater were below the long-term (up to 100 years) irrigation guideline concentration of 5,000 μg/L.
- Chromium and hexavalent chromium concentrations were below the respective laboratory LORs of 1 μg/L and 0.004 mg/L at all groundwater monitoring locations. All concentrations were lower than the long-term (up to 100 years) irrigation guideline concentration of 200 μg/L.
- Iron concentrations ranged from below the laboratory LOR of 5 μg/L at MB6B and MB14, to 28,000 μg/L at MB12. Iron concentrations at MB9 and MB12 exceeded the long-term (up to 100 years) irrigation guideline concentration of 200 μg/L.
- Manganese concentrations ranged from 77 μg/L at MB14 to 3,400 μg/L at MB6B. Manganese concentrations at all locations excluding MB14 exceeded the long-term (up to 100 years) irrigation guideline concentration of 200 μg/L.
- Total phenols were below the laboratory LOR of 0.01 mg/L at all groundwater monitoring points.
- Total organic carbon (TOC) in groundwater ranged from 7.1 mg/L at MB14 to 26 mg/L at MB10.
- Organochlorine pesticides and organophosphorus pesticides were below respective laboratory LORs at all groundwater monitoring points.
- Total petroleum hydrocarbons (TPH) and total recoverable hydrocarbons (TRH) were below respective laboratory LORs at all groundwater monitoring points with the exception of MB12, which recorded TPH at 180 µg/L (C₆-C₉ fraction) and TRH at 200 µg/L (C₆-C₁₀ fraction).

Leachate Quality

A leachate sample was able to be collected from monitoring point LW1. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Leachate quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality 2000 – Primary Industries: Water quality for irrigation and general water use.

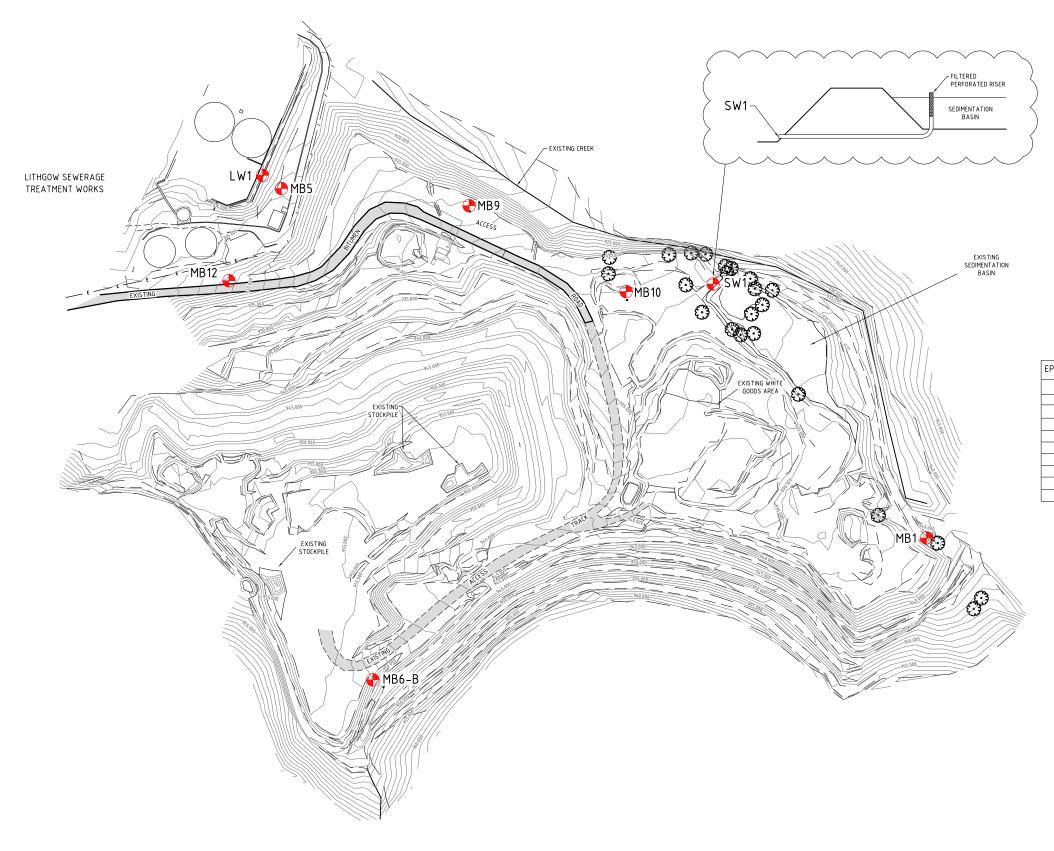
- Laboratory measured pH was neutral, recorded at 7.0. pH was within the guideline range of 6.0 to 8.5 pH units for pumping, irrigation and stock watering.
- Total alkalinity was recorded at 220 mg/L, which was below the guideline hardness value for potential fouling of waters (350 mg/L).
- The recorded chloride concentration was 230 mg/L, and below the guideline value for protection of moderately sensitive crops (350 mg/L).
- The fluoride concentration of leachate was 0.12 mg/L, below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).

- The leachate sulphate concentration was recorded to be 23 mg/L.
- Calcium in leachate was recorded to be 74 mg/L.
- Magnesium in leachate was recorded to be 27 mg/L.
- Potassium in leachate was recorded to be 44 mg/L.
- Sodium in leachate was recorded to be 110 mg/L. Sodium concentrations were below the guideline level for irrigation to moderately sensitive crops (230 mg/L).
- Total organic carbon (TOC) was recorded at 20 mg/L.
- The ammonia concentration of leachate was recorded to be 0.49 mgN/L.
- The nitrate concentration of leachate was recorded to be 0.57 mgN/L.
- Iron in leachate was recorded to be 18 μg/L, and below the long term (up to 100 years) irrigation guideline concentration of 200 μg/L.
- Manganese in leachate was recorded to be 990 μg/L, and above the long term (up to 100 years) irrigation guideline concentration of 200 μg/L.
- Phenolic compounds in leachate were below the laboratory LOR of 0.01 mg/L.

Accumulated Landfill Gas Monitoring

Gas concentrations in buildings and sheds within the required monitoring distance of 250 metres of filled areas were all below the respective threshold concentration of 1.25 % (v/v) during the monthly monitoring rounds conducted in July to October 2017.

The next routine monitoring for groundwater and leachate is scheduled for May 2018. Please do not hesitate to contact us with any questions or comments you may have regarding this report.


Yours faithfully Geolyse Pty Ltd

BRENDAN STUART
Environmental Scientist

No. of Attachments – 4: Environmental Monitoring Point Locations Table 1 – Groundwater Level Measurements

Table 2 – Results of Laboratory Analyses – October 2017 SGS Laboratories Analytical Reports – October 2017

EPA MONITORING POINTS

EPA ID No.	LOCATION	TYPE
1	MB1	GROUNDWATER
2	MB5	GROUNDWATER
3	MB6-B	GROUNDWATER
4	MB9	GROUNDWATER
5	MB10	GROUNDWATER
6	SW1	AMBIENT WATER
7	MB12	GROUNDWATER
8	MB14	GROUNDWATER
9	LW1	LEACHATE
10		LANDFILL GAS

NOTES:

₽ MB14

- THIS PLAN IS PREPARED FROM A FIELD SURVEY FOR THE PURPOSE OF DESIGNING NEW CONSTRUCTIONS ON THE LAND AND SHOULD NOT BE USED FOR ANY OTHER PURPOSE.
- VISIBLE SERVICES HAVE BEEN LOCATED ONLY, PRIOR TO ANY DEMOLITION, EXCAVATION OR CONSTRUCTION ON THE SITE, THE RELEVANT AUTHORITIES SHOULD BE CONTACTED FOR LOCATION OF FURTHER UNDERSCRUNDS SERVICES AND DETAILED LOCATIONS OF ALL SERVICES.
- THESE NOTES ARE AN INTEGRAL PART OF THIS PLAN.

LEGEND:

EXISTING TOP OF BANK

EXISTING ELECTRICITY EXISTING FENCE

orange@geolyse.com www.geolyse.com

EXISTING VEGETATION

EXISTING ACCESS ROAD

65\V		Nο	DATE	DRAFTING CHECK	PM CHECK	DETAILS
	TVCF	Α	27/06/11	LP	AB	WORKING DRAFT
		В	28/09/11	LP	AB	EPL VARIATION
70° 5						
ORANGE	154 PEISLEY STREET					
	P O BOX 1963		l			

LITHGOW SOLID WASTE FACILITY LANDFILL ENVIRONMENTAL MANAGEMENT PLAN

FILE REFERENCE: 0:\Projects\211109\0ut\Cad\Lithgow\211109_01B_EV01-EV09.dwg

ENVIRONMENTAL PROTECTION AUTHORITY EPL:6004

RAW	ING
E	ENVIRONMENTAL MONITORING

SCALE 1:1500(A1) 20 40 60 8 1 20 40 60 8

SCALE 1:3000(A3)

POINTS PROJECT 211109 DRAWING NUMBER: 01B_EV04 REV. B

CITY OF LITHGOW COUNCIL

TABLE 1: LITHGOW SOLID WASTE FACILITY - GROUNDWATER LEVEL RESULTS

Ground Water Levels: 13-Nov-17

Piezometer Details:

	Ground	Stickup	Elevation Top					Well Base	Water Column
	Elev (mAHD)	(m)	PVC (mAHD)	Date	Measured (m)	GWL (mAHD)	Well Depth (m)	(mAHD)	(m)
MB1	939.790	0.86	940.650	13/11/2017	NMWL	-	6.5	934.15	nil
MB5	914.940	0.80	915.740	13/11/2017	3.80	911.94	9.8	905.94	6.00
MB6	945.820	0.85	946.670	13/11/2017	NMWL	-	-	-	nil
MB6B	946.290	0.75	947.040	13/11/2017	12.15	934.89	19.3	927.74	7.15
MB9	928.260	0.69	928.950	13/11/2017	13.84	915.11	17.1	911.85	3.26
MB10	932.180	0.73	932.910	13/11/2017	6.63	926.28	13.7	919.21	7.07
MB11	915.010	0.67	915.680	13/11/2017	NMWL	-	17.9	897.82	nil
MB12	918.330	0.76	919.090	13/11/2017	8.70	910.39	22.3	896.84	13.55
MB13	914.980	0.70	915.680	13/11/2017	NMWL	-	39.4	876.28	nil
MB14	899.790	0.78	900.570	13/11/2017	3.29	897.28	17.7	882.87	14.41

Definitions:

Stickup: Height of piezometer pipe above ground surface.

Ground Elev: Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are

measured to the same datum, hence Piezo GWLs are relative to each other.

GWL: Actual elevation of groundwater at the piezometer relative to an arbitrary datum.

Measured: Depth of groundwater measured from the top of the piezometer pipe.

	MB1		MB5		MB6		MB6B		MB9		MB10		MB11		MB12		MB13		MB14	
Date	Measured	GWL (mAHD)																		
25-Oct-11	NMWL		3.20	912.54	NMWL		9.92	937.12	12.62	916.33	5.77	927.14	NMWL		8.69	910.40	NMWL		2.80	897.77
8-Feb-12	5.85	934.80	3.26	912.48	NMWL		4.68	942.36	12.71	916.24	5.83	927.08	6.87	908.81	8.77	910.32	6.89	908.79	NMWL	
15-Mar-12	3.11	937.54	2.29	913.45	NMWL		7.82	939.22	11.56	917.39	5.51	927.40	6.08	909.60	7.95	911.14	6.11	909.57	2.64	897.93
24-Apr-12	NMWL		2.55	913.19	NMWL		7.47	939.57	12.10	916.85	5.78	927.13	NMWL		8.24	910.85	NMWL		2.67	897.90
31-May-12	5.55	935.10	3.07	912.67	NMWL		9.71	937.33	12.73	916.22	6.04	926.87	NMWL		8.43	910.66	NMWL		2.64	897.93
30-Oct-12	NMWL		3.29	912.45	NMWL		14.64	932.40	13.33	915.62	6.19	926.72	6.83	908.85	8.90	910.19	6.87	908.81	3.11	897.46
17-Apr-13	5.81	934.84	2.87	912.87	NMWL		13.55	933.49	12.80	916.15	6.10	926.81	NMWL		8.50	910.59	NMWL		2.91	897.66
23-Oct-13	NMWL		3.44	912.30	NMWL		13.97	933.07	13.60	915.35	6.35	926.56	NMWL		9.01	910.08	NMWL		3.09	897.48
2-Apr-14	4.90	935.75	3.98	911.76	NMWL		11.00	936.04	13.66	915.29	5.75	927.16	NMWL		9.04	910.05	NMWL		3.20	897.37
2-Jun-14	NMWL		3.96	911.78	NMWL															
21-Oct-14	NMWL		3.81	911.93	NMWL		11.41	935.63	13.13	915.82	6.01	926.90	NMWL		8.89	910.20	NMWL		2.97	897.60
21-Apr-15	NMWL		3.56	912.18	NMWL		14.98	932.06	13.19	915.76	6.26	926.65	NMWL		9.06	910.03	NMWL		3.27	897.30
13-Oct-15	NMWL		3.34	912.40	NMWL		12.18	934.86	13.30	915.65	6.30	926.61	NMWL		8.35	910.74	NMWL		3.06	897.51

									चाल		
				Sample ID	LW1	MB5	MB6-B	MB9	MB10	MB12	MB14
				ample Date	14/11/2017			14/11/2017		14/11/2017	14/11/2017
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS	PS	PS
Physical Parameters	pH (Lab)	0	No unit	6.0 - 8.5	7	6.2	6.2	6	6.6	4	6.6
	Electrical Conductivity (Lab)	2	μS/cm	4478	-	1200	1200	490	1200	1100	760
	Chemical Oxygen Demand Total Dissolved Solids	10 10	mg/L	-	-	17	27 690	35 230	60 570	19 730	14 370
All			mg/L	-	- 220	630 270	320		370		310
Alkalinity	Bicarbonate Alkalinity as CaCO3 Total Alkalinity as CaCO3	5	mg/L		220			150		< 5	
	,	5	mg/L	350	220	270	320	150	370	< 5	310
Anions	Chloride	1	mg/L	350	230	170	180	48	150	260	33
	Fluoride	0.1	mg/L	1	0.12	< 0.1	0.14	< 0.1	< 0.1	0.14	0.11
Cabiana	Sulfate (SO4)	1	mg/L	1000	23	25 72	34 71	15	7.5	110	43 99
Cations	Calcium (Ca)	0.2	mg/L	1000	74			27	76	27	
	Magnesium (Mg)	0.1	mg/L	-	27	23	54	13	25	21	29
	Potassium (K)	0.1	mg/L	-	44	55	16	14	26	10	9
5 (0.1	Sodium (Na)	0.5	mg/L	230	110	92	69	25	91	94	16
Forms of Carbon	Total Organic Carbon	0.2	mg/L	-	20	9.6	11	7.7	26	11	7.1
Nutrients	Ammonia (NH3) as N	0.01	mg/L	-	0.49	4.9	1	4.7	18	5.7	0.24
	Nitrate (NO3) as N	0.005	mg/L	-	0.57	6.2	< 0.005	< 0.005	0.15	< 0.005	< 0.005
	Total Phosphorus	0.02	mg/L	0.05	-	< 0.02	0.13	0.28	< 0.02	< 0.02	< 0.02
Trace Metals	Hexavalent Chromium (Cr-VI)	0.004	mg/L	0.1	-	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004
	Aluminium (Al)	5	μg/L	5000	-	< 5	< 5	< 5	< 5	4300	< 5
	Chromium (Cr)	1	μg/L	-	- 10	<1	<1	< 1	< 1	<1	<1
	Iron (Fe)	5	μg/L	200	18	14	< 5	3700	28	28000	< 5
ol II	Manganese (Mn)	1	μg/L	200	990	660	3400	1900	500	1400	77
Phenolics	Total Phenols	0.01	mg/L	-	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
OC Pesticides	Aldrin	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha BHC	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha Chlordane	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Alpha Endosulfan	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Beta BHC	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Beta Endosulfan	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Delta BHC	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Dieldrin	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endosulfan sulphate	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin aldehyde	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Endrin ketone	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Heptachlor	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Heptachlor epoxide	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Hexachlorobenzene (HCB)	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Lindane (gamma BHC)	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Methoxychlor	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDD	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDE	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	p,p'-DDT	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDD	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDT	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	o,p'-DDE	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Gamma Chlordane	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	trans-Nonachlor	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Isodrin	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	Mirex	0.1	μg/L	-	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
OP Pesticides	Azinphos-methyl	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Bromophos Ethyl	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Diazinon (Dimpylate)	0.5	μg/L	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dichlorvos	0.5	μg/L	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Dimethoate	0.5	μg/L	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	Ethion	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Fenitrothion	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Malathion	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Parathion-ethyl (Parathion)	0.2	μg/L	-	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	Methidathion	0.5	μg/L	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Total Petroleum Hydrocarbons	TRH C6-C9	40	μg/L	-	-	< 40	< 40	< 40	< 40	180	< 40
	TRH C10-C14	50	μg/L	-	-	< 50	< 50	< 50	< 50	< 50	< 50
	TRH C15-C28	200	μg/L	-	-	< 200	< 200	< 200	< 200	< 200	< 200
	TRH C29-C36	200	μg/L	-	-	< 200	< 200	< 200	< 200	< 200	< 200
	TRH C10-C36	450	μg/L	-	-	< 450	< 450	< 450	< 450	< 450	< 450
	TRH C37-C40	200	μg/L	-	-	< 200	< 200	< 200	< 200	< 200	< 200
Total Recoverable Hydrocarbons	TRH C6-C10	50	μg/L	-	-	< 50	< 50	< 50	< 50	200	< 50
	TRH C6-C10 minus BTEX (F1)	50	μg/L	-	-	< 50	< 50	< 50	< 50	200	< 50
	TRH >C10-C16 (F2)	60	μg/L	-	-	< 60	< 60	< 60	< 60	< 60	< 60
ļ	TRH >C16-C34 (F3)	500	μg/L	-	-	< 500	< 500	< 500	< 500	< 500	< 500
	TRH >C34-C40 (F4)	500	μg/L	-	-	< 500	< 500	< 500	< 500	< 500	< 500
	TRH C10-C40	650	μg/L	-	-	< 650	< 650	< 650	< 650	< 650	< 650
BTEXN Analytes	Benzene (F0)	0.5	μg/L	-	-	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5

milligrams per litre μg/L μS/cm LOR PS Criteria

milligrams per litre
microsiemens per litre
microsiemens per centimetre
limit of reporting
primary sample
Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management
Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - 'Primary
Industries: Water quality for irrigation and general water use', 2000
within criteria
criteria exceeded

CLIENT DETAILS -

LABORATORY DETAILS

Laboratory

Brendan Stuart Contact

GEOLYSE PTY LIMITED Client

Address PO BOX 1963

NSW 2800

Huong Crawford Manager

SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

Telephone 61 2 68841525 Facsimile

(Not specified)

(Not specified)

bstuart@geolyse.com

Project 217500 - Lithgow SWF

Samples

Telephone +61 2 8594 0400 Facsimile +61 2 8594 0499

au.environmental.sydney@sgs.com Email

SGS Reference Date Received

SE172657 R0 15 Nov 2017

24 Nov 2017 Date Reported

COMMENTS

Order Number

Email

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheegar Beniameen

Chemist

Dong Liang

Metals/Inorganics Team Leader

Kmln

Huong Crawford Production Manager

Kamrul Ahsan Senior Chemist Ly Kim Ha

Organic Section Head

Shane McDermott Inorganic/Metals Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia Australia t +61 2 8594 0400 f+61 2 8594 0499

www.sgs.com.au

SE172657 R0

		ımple Number	SE172657.001	SE172657.002	SE172657.003	SE172657.004
		Sample Matrix	Water	Water	Water	Water
		Sample Date Sample Name	14 Nov 2017 LW1	14 Nov 2017 MB10	14 Nov 2017 MB12	14 Nov 2017 MB14
Parameter	Units	LOR				
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 24/11	1/2017				
TRH C6-C10	μg/L	50	-	<50	200	<50
TRH C6-C9	μg/L	40	-	<40	180	<40
Surrogates						
Dibromofluoromethane (Surrogate)	%	_	-	94	100	106
d4-1,2-dichloroethane (Surrogate)	%	-	-	98	107	110
d8-toluene (Surrogate)	%	-	-	90	99	102
Bromofluorobenzene (Surrogate)	%	-	-	90	102	105
VPH F Bands						
Benzene (F0)	μg/L	0.5	-	<0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	μg/L	50	-	<50	200	<50
TRH (Total Recoverable Hydrocarbons) in Water Method: AN	403 Tested	I: 20/11/2017				
TRH C10-C14	μg/L	50	-	<50	<50	<50
TRH C15-C28	μg/L	200	-	<200	<200	<200
TRH C29-C36	μg/L	200	-	<200	<200	<200
TRH C37-C40	μg/L	200	-	<200	<200	<200
TRH C10-C36	μg/L	450	-	<450	<450	<450
TRH C10-C40	μg/L	650	-	<650	<650	<650
TRH F Bands						
TRH >C10-C16 (F2)	μg/L	60	-	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	-	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	-	<500	<500	<500
OC Pesticides in Water Method: AN420 Tested: 23/11/2017						
Hexachlorobenzene (HCB)	μg/L	0.1	-	<0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	-	<0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	-	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	-	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	-	<0.1	<0.1	<0.1
Beta BHC	μg/L	0.1	-	<0.1	<0.1	<0.1
Delta BHC	μg/L	0.1	-	<0.1	<0.1	<0.1
Heptachlor epoxide	μg/L	0.1	-	<0.1	<0.1	<0.1
o,p'-DDE	μg/L	0.1	-	<0.1	<0.1	<0.1
Alpha Endosulfan	μg/L	0.1	-	<0.1	<0.1	<0.1
Gamma Chlordane	μg/L	0.1	-	<0.1	<0.1	<0.1
Alpha Chlordane trans-Nonachlor	μg/L	0.1	-	<0.1 <0.1	<0.1	<0.1
p,p'-DDE	μg/L μg/L	0.1	-	<0.1	<0.1	<0.1
Dieldrin	μg/L	0.1	-	<0.1	<0.1	<0.1
Endrin	μg/L	0.1	-	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	-	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	-	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	-	<0.1	<0.1	<0.1
p,p'-DDD	μg/L	0.1	-	<0.1	<0.1	<0.1
p,p'-DDT	μg/L	0.1	-	<0.1	<0.1	<0.1
Endosulfan sulphate	μg/L	0.1	-	<0.1	<0.1	<0.1
Endrin aldehyde	μg/L	0.1	-	<0.1	<0.1	<0.1
Methoxychlor	μg/L	0.1	-	<0.1	<0.1	<0.1
Endrin ketone	μg/L	0.1	-	<0.1	<0.1	<0.1
Isodrin	μg/L	0.1	-	<0.1	<0.1	<0.1
Mirex	μg/L	0.1	-	<0.1	<0.1	<0.1

24-November-2017 Page 2 of 17

SE172657 R0

	Sa S	nple Number Imple Matrix Sample Date Imple Name	SE172657.001 Water 14 Nov 2017 LW1	SE172657.002 Water 14 Nov 2017 MB10	SE172657.003 Water 14 Nov 2017 MB12	SE172657.004 Water 14 Nov 2017 MB14
Parameter	Units	LOR				
OC Pesticides in Water Method: AN420 Tested: 23/11/2017 Surrogates	(continued)					
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	-	54	68	63
OP Pesticides in Water Method: AN420 Tested: 22/11/2017						
Dichlorvos	μg/L	0.5	-	<0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	-	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	-	<0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	-	<0.2	<0.2	<0.2
Malathion	μg/L	0.2	-	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	-	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	-	<0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	-	<0.2	<0.2	<0.2
Methidathion	μg/L	0.5	-	<0.5	<0.5	<0.5
Ethion	μg/L	0.2	-	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	-	<0.2	<0.2	<0.2
Surrogates						
2-fluorobiphenyl (Surrogate)	%	-	-	60	80	70
d14-p-terphenyl (Surrogate)	%	-	-	82	100	90
Total Phenolics in Water Method: AN289 Tested: 20/11/2017			,	'	<u>'</u>	
Total Phenois	mg/L	0.01	<0.01	<0.01	<0.01	<0.01
pH in water Method: AN101 Tested: 16/11/2017			,	,	,	
pH**	No unit	-	7.0	6.6	4.0	6.6
Conductivity and TDS by Calculation - Water Method: AN106	Tested: 16/	11/2017				
Conductivity @ 25 C	μS/cm	2	-	1200	1100	760

24-November-2017 Page 3 of 17

Chemical Oxygen Demand

ANALYTICAL REPORT

SE172657 R0

	mple Name	LW1	MB10	MB12	MB14
Jnits	LOR				
ng/L	0.2	20	26	11	7.1
ng/L	5	220	370	<5	310
ng/L	5	220	370	<5	310
20/11/20 ²	17				
ng/L	1	230	150	260	33
ng/L	1	23	7.5	110	43
ng/L	0.1	0.12	<0.10	0.14	0.11
ng/L	0.005	0.57	0.15	<0.005	<0.005
Teste	ed: 17/11/201	7		`	
ng/L	0.01	0.49	18	5.7	0.24
9/AN293	(Sydney only	y) Tested: 21/1	1/2017		
ng/L	0.02	_	<0.02	<0.02	<0.02
יור יור	ng/L ng/L 20/11/20 ng/L ng/L ng/L ng/L ng/L ng/L ng/L ng/L	19/L 5 19/L 5 20/11/2017 19/L 1 19/L 1 19/L 0.1 19/L 0.005 Tested: 17/11/201	19/L 5 220 19/L 5 220 20/11/2017 19/L 1 230 19/L 1 23 19/L 0.1 0.12 19/L 0.005 0.57 Tested: 17/11/2017 19/L 0.01 0.49 20/AN293(Sydney only) Tested: 21/1	19/L 5 220 370 19/L 5 220 370 20/11/2017 19/L 1 230 150 19/L 1 23 7.5 19/L 0.1 0.12 <0.10 19/L 0.005 0.57 0.15 Tested: 17/11/2017 19/L 0.01 0.49 18	19/L 5 220 370 <5 19/L 5 220 370 <5 19/L 5 220 370 <5 109/L 5 220 370 <5 120/11/2017 19/L 1 230 150 260 19/L 1 23 7.5 110 19/L 0.1 0.12 <0.10 0.14 19/L 0.005 0.57 0.15 <0.005 Tested: 17/11/2017 19/L 0.01 0.49 18 5.7

24-November-2017 Page 4 of 17

SE172657 R0

	Sa S	nple Number ample Matrix Sample Date ample Name	SE172657.001 Water 14 Nov 2017 LW1	SE172657.002 Water 14 Nov 2017 MB10	SE172657.003 Water 14 Nov 2017 MB12	SE172657.004 Water 14 Nov 2017 MB14
Parameter	Units	LOR				
Hexavalent Chromium in water by Discrete Analyser Method:	AN283 Tes	ted: 23/11/2	017			
Hexavalent Chromium, Cr6+	mg/L	0.004	-	<0.004	<0.004	<0.004
	d: 20/11/2017					
Total Dissolved Solids Dried at 175-185°C	mg/L	10	-	570	730	370
Metals in Water (Dissolved) by ICPOES Method: AN320 Tes	sted: 21/11/20	0.2	74	76	27	99
	mg/L					
Magnesium, Mg	mg/L	0.1	27	25	21	29
Potassium, K	mg/L	0.1	44	26	10	9.0
Sodium, Na	mg/L	0.5	110	91	94	16
Trace Metals (Dissolved) in Water by ICPMS Method: AN318	Tested: 20/1	1/2017				
Aluminium, Al	μg/L	5	-	<5	4300	<5
Chromium, Cr	μg/L	1	-	<1	<1	<1
Iron, Fe	μg/L	5	18	28	28000	<5
Manganese, Mn	μg/L	1	990	500	1400	77

24-November-2017 Page 5 of 17

		Sample Number Sample Matrix Sample Date Sample Name	Water 14 Nov 2017	SE172657.006 Water 14 Nov 2017 MB6-B	SE172657.007 Water 14 Nov 2017 MB9
Parameter	Units	LOR			
Volatile Petroleum Hydrocarbons in Water Method: AN433	Tested: 22/	11/2017			
TRH C6-C10	μg/L	50	<50	<50	<50
TRH C6-C9	μg/L	40	<40	<40	<40
Surrogates					
Dibromofluoromethane (Surrogate)	%	-	97	100	94
d4-1,2-dichloroethane (Surrogate)	%	-	102	108	102
d8-toluene (Surrogate)	%	-	96	95	91
Bromofluorobenzene (Surrogate)	%	-	95	100	97
VPH F Bands					
Benzene (F0)	μg/L	0.5	<0.5	<0.5	<0.5
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50
TRH (Total Recoverable Hydrocarbons) in Water Method: AN	403 Teste	d: 20/11/2017	,		
TRH C10-C14	μg/L	50	<50	<50	<50
TRH C15-C28	μg/L	200	<200	<200	<200
TRH C29-C36	μg/L	200	<200	<200	<200
TRH C37-C40	μg/L	200	<200	<200	<200
TRH C10-C36	µg/L	450	<450	<450	<450
TRH C10-C40	μg/L	650	<650	<650	<650
TRH F Bands					
TRH >C10-C16 (F2)	μg/L	60	<60	<60	<60
TRH >C16-C34 (F3)	μg/L	500	<500	<500	<500
TRH >C34-C40 (F4)	μg/L	500	<500	<500	<500
OC Pesticides in Water Method: AN420 Tested: 20/11/2017					
Hexachlorobenzene (HCB)	μg/L	0.1	<0.1	<0.1	<0.1
Alpha BHC	μg/L	0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1	<0.1	<0.1
Heptachlor	μg/L	0.1	<0.1	<0.1	<0.1
Aldrin	μg/L	0.1	<0.1	<0.1	<0.1
Beta BHC	μg/L	0.1	<0.1	<0.1	<0.1
Delta BHC	μg/L	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDE	μg/L	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1	<0.1 <0.1	<0.1
Gamma Chlordane Alpha Chlordane	μg/L μg/L	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	μg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDD	μg/L	0.1	<0.1	<0.1	<0.1
p,p'-DDT	μg/L	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1	<0.1	<0.1
Endrin aldehyde	μg/L	0.1	<0.1	<0.1	<0.1
Methoxychlor	μg/L	0.1	<0.1	<0.1	<0.1
Endrin ketone	μg/L	0.1	<0.1	<0.1	<0.1
Isodrin	μg/L	0.1	<0.1	<0.1	<0.1
Mirex	μg/L	0.1	<0.1	<0.1	<0.1

24-November-2017 Page 6 of 17

Conductivity @ 25 C

ANALYTICAL REPORT

SE172657 R0

	Sa	nple Number ample Matrix Sample Date ample Name	SE172657.005 Water 14 Nov 2017 MB5	SE172657.006 Water 14 Nov 2017 MB6-B	SE172657.0 Water 14 Nov 201 MB9
Parameter	Units	LOR			
OC Pesticides in Water Method: AN420 Tested: 20/11/2017 Surrogates	(continued)				
Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	63	65	65
OP Pesticides in Water Method: AN420 Tested: 20/11/2017					
Dichlorvos	μg/L	0.5	<0.5	<0.5	<0.5
Dimethoate	μg/L	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	μg/L	0.5	<0.5	<0.5	<0.5
Fenitrothion	μg/L	0.2	<0.2	<0.2	<0.2
Malathion	μg/L	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	μg/L	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	μg/L	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	μg/L	0.2	<0.2	<0.2	<0.2
Methidathion	μg/L	0.5	<0.5	<0.5	<0.5
Ethion	μg/L	0.2	<0.2	<0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2
Surrogates					
2-fluorobiphenyl (Surrogate)	%	-	74	74	80
d14-p-terphenyl (Surrogate)	%	-	100	94	106
Total Phenolics in Water Method: AN289 Tested: 21/11/2017					
Total Phenois	mg/L	0.01	<0.01	<0.01	<0.01
pH in water Method: AN101 Tested: 16/11/2017					
pH**	No unit	_	6.2	6.2	6.0

μS/cm

24-November-2017 Page 7 of 17

SE172657 R0

	\$	mple Number Sample Matrix Sample Date Sample Name	SE172657.005 Water 14 Nov 2017 MB5	SE172657.006 Water 14 Nov 2017 MB6-B	SE172657.007 Water 14 Nov 2017 MB9
Parameter	Units	LOR			
Forms of Carbon Method: AN190 Tested: 20/11/2017					
Total Organic Carbon as NPOC	mg/L	0.2	9.6	11	7.7
Alkalinity Method: AN135 Tested: 17/11/2017					
Bicarbonate Alkalinity as CaCO3	mg/L	5	270	320	150
Total Alkalinity as CaCO3	mg/L	5	270	320	150
Anions by Ion Chromatography in Water Method: AN245 Tes	sted: 20/11/2	2017		·	
Chloride	mg/L	1	170	180	48
Sulfate, SO4	mg/L	1	25	34	15
Fluoride	mg/L	0.1	<0.10	0.14	<0.10
Nitrate Nitrogen, NO3-N	mg/L	0.005	6.2	<0.005	<0.005
Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: A	N291 Tes	sted: 17/11/20	017		
Ammonia Nitrogen, NH₃ as N	mg/L	0.01	4.9	1.0	4.7
Total Phosphorus by Kjeldahl Digestion DA in Water Method:	AN279/AN29	3(Sydney or	nly) Tested: 21/	11/2017	
Total Phosphorus (Kjeldahl Digestion)	mg/L	0.02	<0.02	0.13	0.28
COD in Water Method: AN179/AN181 Tested: 17/11/2017					
Chemical Oxygen Demand	mg/L	10	17	27	35

24-November-2017 Page 8 of 17

Manganese, Mn

ANALYTICAL REPORT

660

3400

1900

SE172657 R0

	s	mple Number ample Matrix Sample Date Sample Name	SE172657.005 Water 14 Nov 2017 MB5	SE172657.006 Water 14 Nov 2017 MB6-B	SE172657.007 Water 14 Nov 2017 MB9
Parameter Mathematical Character In Proceedings of the Proceedings of	Units	LOR	247		
Hexavalent Chromium in water by Discrete Analyser Method:	AN283 169	sted: 23/11/20	J1 <i>7</i>		
Hexavalent Chromium, Cr6+	mg/L	0.004	<0.004	<0.004	<0.004
Total Dissolved Solids Dried at 175-185°C Metals in Water (Dissolved) by ICPOES Method: AN320 Test	mg/L sted: 21/11/20	10	630	690	230
Calcium, Ca	mg/L	0.2	72		
				71	27
Magnesium, Mg	mg/L	0.1	23	71 54	27 13
Magnesium, Mg Potassium, K	mg/L mg/L	0.1	23 55		
	-			54	13
Potassium, K	mg/L	0.1	55	54 16	13 14
Potassium, K Sodium, Na	mg/L mg/L	0.1	55	54 16	13 14
Potassium, K Sodium, Na Trace Metals (Dissolved) in Water by ICPMS Method: AN318	mg/L mg/L Tested: 20/	0.1 0.5	55 92	54 16 69	13 14 25

μg/L

24-November-2017 Page 9 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Bicarbonate Alkalinity as CaCO3	LB136716	mg/L	5	<5	4%	NA
Total Alkalinity as CaCO3	LB136716	mg/L	5	<5	0 - 4%	97%

Ammonia Nitrogen by Discrete Analyser (Aquakem) Method: ME-(AU)-[ENV]AN291

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ı		Reference					%Recovery
ı	Ammonia Nitrogen, NH₃ as N	LB136751	mg/L	0.01	<0.01	6 - 71%	108%

Anions by Ion Chromatography in Water Method: ME-(AU)-[ENV]AN245

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Chloride	LB136746	mg/L	1	<0.05	0 - 1%	97%
Sulfate, SO4	LB136746	mg/L	1	<1.0	1%	95%
Fluoride	LB136746	mg/L	0.1	<0.10	0%	96%
Nitrate Nitrogen, NO3-N	LB136746	mg/L	0.005	<0.005	14%	96%

COD in Water Method: ME-(AU)-[ENV]AN179/AN181

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
П		Reference					%Recovery
ı	Chemical Oxygen Demand	LB136685	mg/L	10	<10	16%	87%

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

ı	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
ш		Reference					%Recovery
ı	Conductivity @ 25 C	LB136692	μS/cm	2	<2	1%	100%

Forms of Carbon Method: ME-(AU)-[ENV]AN190

	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
1		Reference					%Recovery	%Recovery
1	Total Organic Carbon as NPOC	LB136971	mg/L	0.2	<0.2	1%	97%	95%

24-November-2017 Page 10 of 17

MB blank results are compared to the Limit of Reporting LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample. DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Hexavalent Chromium in water by Discrete Analyser Method: ME-(AU)-[ENV]AN283

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Hexavalent Chromium, Cr6+	LB137029	mg/L	0.004	<0.004	0%	100%	101%

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Calcium, Ca	LB136868	mg/L	0.2	<0.2	2 - 3%	95%	106%
Magnesium, Mg	LB136868	mg/L	0.1	<0.1	1 - 2%	95%	
Potassium, K	LB136868	mg/L	0.1	<0.1	2 - 6%	93%	123%
Sodium, Na	LB136868	mg/L	0.5	<0.5	1 - 6%	98%	89%

OC Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery
Hexachlorobenzene (HCB)	LB136731	μg/L	0.1	<0.1	0%	NA
Alpha BHC	LB136731	μg/L	0.1	<0.1	0%	NA
Lindane (gamma BHC)	LB136731	μg/L	0.1	<0.1	0%	NA
Heptachlor	LB136731	μg/L	0.1	<0.1	0%	107%
Aldrin	LB136731	μg/L	0.1	<0.1	0%	102%
Beta BHC	LB136731	μg/L	0.1	<0.1	0%	NA
Delta BHC	LB136731	μg/L	0.1	<0.1	0%	111%
Heptachlor epoxide	LB136731	μg/L	0.1	<0.1	0%	NA
o,p'-DDE	LB136731	μg/L	0.1	<0.1	0%	NA
Alpha Endosulfan	LB136731	μg/L	0.1	<0.1	0%	NA
Gamma Chlordane	LB136731	μg/L	0.1	<0.1	0%	NA
Alpha Chlordane	LB136731	μg/L	0.1	<0.1	0%	NA
trans-Nonachlor	LB136731	μg/L	0.1	<0.1	0%	NA
p,p'-DDE	LB136731	μg/L	0.1	<0.1	0%	NA
Dieldrin	LB136731	μg/L	0.1	<0.1	0%	108%
Endrin	LB136731	μg/L	0.1	<0.1	0%	116%
o,p'-DDD	LB136731	μg/L	0.1	<0.1	0%	NA
o,p'-DDT	LB136731	μg/L	0.1	<0.1	0%	NA
Beta Endosulfan	LB136731	μg/L	0.1	<0.1	0%	NA
p,p'-DDD	LB136731	μg/L	0.1	<0.1	0%	NA
p,p'-DDT	LB136731	μg/L	0.1	<0.1	0%	121%
Endosulfan sulphate	LB136731	μg/L	0.1	<0.1	0%	NA
Endrin aldehyde	LB136731	μg/L	0.1	<0.1	0%	NA
Methoxychlor	LB136731	μg/L	0.1	<0.1	0%	NA
Endrin ketone	LB136731	μg/L	0.1	<0.1	0%	NA
Isodrin	LB136731	μg/L	0.1	<0.1	0%	NA
Mirex	LB136731	μg/L	0.1	<0.1	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	LB136731	%	-	65%	4%	70%

24-November-2017 Page 11 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

OP Pesticides in Water Method: ME-(AU)-[ENV]AN420

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
Dichlorvos	LB136731	μg/L	0.5	<0.5	0%	80%
Dimethoate	LB136731	μg/L	0.5	<0.5	0%	NA
Diazinon (Dimpylate)	LB136731	μg/L	0.5	<0.5	0%	118%
Fenitrothion	LB136731	μg/L	0.2	<0.2	0%	NA
Malathion	LB136731	μg/L	0.2	<0.2	0%	NA
Chlorpyrifos (Chlorpyrifos Ethyl)	LB136731	μg/L	0.2	<0.2	0%	124%
Parathion-ethyl (Parathion)	LB136731	μg/L	0.2	<0.2	0%	NA
Bromophos Ethyl	LB136731	μg/L	0.2	<0.2	0%	NA
Methidathion	LB136731	μg/L	0.5	<0.5	0%	NA
Ethion	LB136731	μg/L	0.2	<0.2	0%	73%
Azinphos-methyl	LB136731	μg/L	0.2	<0.2	0%	NA

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
	Reference					%Recovery
2-fluorobiphenyl (Surrogate)	LB136731	%	-	52%	0%	74%
d14-p-terphenyl (Surrogate)	LB136731	%	-	58%	2%	78%

pH in water Method: ME-(AU)-[ENV]AN101

	Parameter	QC	Units	LOR	DUP %RPD	LCS
		Reference				%Recovery
ı	pH**	LB136692	No unit	-	1 - 3%	99%

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

- 1	Parameter	QC	Units	LOR	MB	DUP %RPD	LCS
		Reference					%Recovery
	Total Dissolved Solids Dried at 175-185°C	LB136720	mg/L	10	<10	10%	83%

24-November-2017 Page 12 of 17

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Total Phenolics in Water Method: ME-(AU)-[ENV]AN289

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Total Phenols	LB136740	mg/L	0.01	<0.01	0%	99%	97%
	LB136841	mg/L	0.01	<0.01	0%	98%	100%

Total Phosphorus by Kjeldahl Digestion DA in Water Method: ME-(AU)-[ENV]AN279/AN293(Sydney only)

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Total Phosphorus (Kjeldahl Digestion)	LB136855	mg/L	0.02	<0.02	22%	108%	108%

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
Aluminium, Al	LB136752	μg/L	5	<5	0 - 4%	95%	
Chromium, Cr	LB136752	μg/L	1	<1	0%	101%	100%
Iron, Fe	LB136752	μg/L	5	<5	1 - 2%	101%	93%
Manganese, Mn	LB136752	μg/L	1	<1	2%	103%	95%

TRH (Total Recoverable Hydrocarbons) in Water Method: ME-(AU)-[ENV]AN403

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH C10-C14	LB136731	μg/L	50	<50	0%	104%	100%
TRH C15-C28	LB136731	μg/L	200	<200	0%	125%	128%
TRH C29-C36	LB136731	μg/L	200	<200	0%	133%	108%
TRH C37-C40	LB136731	μg/L	200	<200	0%	NA	NA
TRH C10-C36	LB136731	μg/L	450	<450	0%	NA	NA
TRH C10-C40	LB136731	μg/L	650	<650	0%	NA	NA

TRH F Bands

Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
TRH >C10-C16 (F2)	LB136731	μg/L	60	<60	0%	116%	114%
TRH >C16-C34 (F3)	LB136731	μg/L	500	<500	0%	137%	127%
TRH >C34-C40 (F4)	LB136731	μg/L	500	<500	0%	130%	102%

24-November-2017 Page 13 of 17

MB blank results are compared to the Limit of Reporting
LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula: the absolute difference of the two results divided by the average of the two results as a percentage. Where the DUP RPD is 'NA', the results are less than the LOR and thus the RPD is not applicable.

Volatile Petroleum Hydrocarbons in Water Method: ME-(AU)-[ENV]AN433

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
TRH C6-C10	LB136927	μg/L	50	<50	0%	99%	99%
TRH C6-C9	LB136927	μg/L	40	<40	0%	93%	92%

Surrogates

Parameter	QC	Units	LOR	MB	DUP %RPD	LCS	MS
	Reference					%Recovery	%Recovery
Dibromofluoromethane (Surrogate)	LB136927	%	-	92%	3 - 4%	100%	98%
d4-1,2-dichloroethane (Surrogate)	LB136927	%	-	95%	0 - 3%	102%	103%
d8-toluene (Surrogate)	LB136927	%	-	84%	9%	91%	88%
Bromofluorobenzene (Surrogate)	LB136927	%	-	89%	4 - 7%	98%	92%

VPH F Bands

I	Parameter	QC Reference	Units	LOR	MB	DUP %RPD	LCS %Recovery	MS %Recovery
ı	Benzene (F0)	LB136927	μg/L	0.5	<0.5	0%	NA NA	NA NA
1	TRH C6-C10 minus BTEX (F1)	LB136927	μg/L	50	<50	0%	99%	100%

24-November-2017 Page 14 of 17

SGS

METHOD SUMMARY

METHOD	METHODOLOGY SHMMADY
WEITIOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN181	Analysis of COD by Semi Closed Reflux: The sample is refluxed with strong acid and a known excess of oxidant. After digestion the unreduced oxidant is back titrated to determine the amount of oxidant consumed. The chemically oxidised matter is calculated in terms of oxygen equivalents. Reference APHA 5220 B.
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.
AN283	Hexavalent Chromium via Aquakem DA: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.
AN289	Analysis of Total Phenols in Soil Sediment and Water: Steam distillable phenols react with 4-aminoantipyrine at pH 7.9±0.1 in the presence of potassium ferricyanide to form a coloured antipyrine dye analysed by Discrete Analyser. Reference APHA 5530 B/D.

24-November-2017 Page 15 of 17

METHOD SUMMARY

METHOD	
METHOD -	METHODOLOGY SUMMARY
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 670 nm by Discrete Analyser.
AN318	Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements. Reference APHA 3120 B.
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

24-November-2017 Page 16 of 17

FOOTNOTES _

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

* NATA accreditation does not cover the

performance of this service.

** Indicative data, theoretical holding time exceeded.

LOR Limit of Reporting

↑↓ Raised or Lowered Limit of Reporting
QFH QC result is above the upper tolerance
QFL QC result is below the lower tolerance

- The sample was not analysed for this analyte

NVL Not Validated

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

24-November-2017 Page 17 of 17