

Our Ref: 217500_LET_021

29 May 2024

Lithgow City Council PO Box 19, 180 Mort Street Lithgow NSW 2790

Attention: Nigel Campbell, Waste & Recycling Manager

Environmental Monitoring of Lithgow Solid Waste Facility, Under Environment Protection Licence 6004 – May 2024

Premise has completed scheduled groundwater and accumulated landfill gas monitoring at Lithgow Solid Waste Facility, located off Geordie Street, Lithgow on 13 May 2024. Leachate discharge monitoring from point LW1 was also conducted.

Groundwater Levels

Groundwater was gauged at six (6) groundwater monitoring bores across the site. Groundwater gauging data is included in **Table 1** (attached), and elevation trends are shown on **Figure 1**.

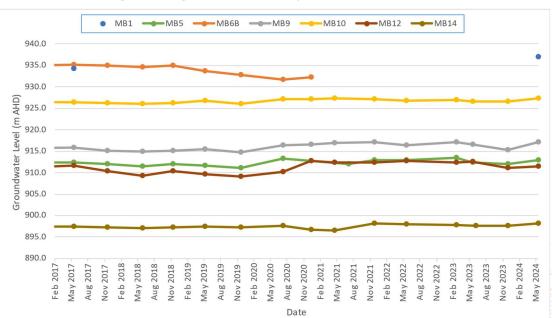


Figure 1 – Lithgow Solid Waste Facility – Groundwater Elevations

Groundwater observations were as follows:

- Depths to groundwater ranged from 2.46 metres below ground level (mbgl) at MB14, to 11.80 mbgl at MB9. Corrected groundwater elevations ranged from 898.11 metres Australian Height Datum (mAHD) at MB14, to 936.98 mAHD at MB1.
- Inference of groundwater elevations, calculated from available survey data from installed groundwater monitoring bores, indicate a flow direction to the south-west.

Groundwater Quality

Groundwater samples were able to be collected from bores MB1, MB5, MB9, MB10, MB12 and MB14. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Groundwater quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH ranged from 4.1 at MB12 to 6.9 at MB14. pH of groundwater at MB12 was verified by field probe measurement, and outside the guideline range considered suitable for pumping, irrigation and stock watering (6.0 to 8.5 pH units).
- Electrical conductivity (EC) ranged from 100 $\mu\text{S/cm}$ at piezometer MB1 to 1,300 $\mu\text{S/cm}$ at piezometer MB5.
- Total dissolved solids (TDS) ranged from 57 mg/L at MB10 to 820 mg/L at MB5. TDS concentrations were below the livestock watering 'loss of production' tolerance limit for the most susceptible livestock category, poultry (3000 mg/L – ANZECC & ARMCANZ, 2000).
- The chemical oxygen demand (COD) of groundwater samples ranged from less than the laboratory limit of reporting (LOR) of 10 mg/L at MB1, MB10 and MB14, to 28 mg/L at MB12.
- Total alkalinity in groundwater ranged from below the laboratory LOR of 5 mgCaCO₃/L at MB12, to 390 mgCaCO₃/L at MB5. Alkalinity of groundwater exceeded the guideline hardness value for potential fouling of waters (350 mg/L) at MB5.
- Groundwater chloride concentrations ranged from 9.6 mg/L at MB10 to 310 mg/L at MB12. All concentrations were below the guideline value for protection of moderately sensitive crops (350 mg/L).
- Fluoride concentrations in groundwater were recorded at below the LOR of 0.1 mg/L at all monitoring bores, with the exception of MB12 (0.15 mg/L). All concentrations were below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- Sulfate concentrations in groundwater ranged from less than the laboratory LOR of 1 mg/L at MB9, to 120 mg/L at MB12.
- Calcium concentrations ranged from 3.8 mg/L at MB1 to 100 mg/L at MB5.

- Magnesium concentrations ranged from 3.2 mg/L at MB1 to 34 mg/L at MB5.
- Potassium concentrations ranged from 2 mg/L at MB10 to 60 mg/L at MB5.
- Concentrations of sodium ranged from 6.5 mg/L at MB10 to 120 mg/L at MB5 and MB12. Sodium concentrations were below the guideline level for irrigation to moderately sensitive crops (<230 mg/L).
- Ammonia concentrations in groundwater ranged from 0.01 mgN/L at MB10 to 11 mgN/L at MB12.
- Nitrate concentrations ranged from 0.006 mgN/L at MB12, to 0.78 mgN/L at MB5. The nitrate concentration in groundwater at MB5 was recorded to have decreased since the previous monitoring (8.4 mgN/L in November 2023), however nitrate concentrations at MB5 have been observed to fluctuate.
- Phosphorus concentrations in groundwater ranged from 0.07 mg/L at MB9 and MB14, to 0.23 mg/L at MB1. Phosphorus concentrations in groundwater were recorded to have increased since the previous monitoring round in November 2023, and exceeded the guideline value of 0.05 mg/L for long term irrigation use (up to 100 years).
- Aluminium concentrations in groundwater were recorded to range from below the laboratory LOR of 0.005 mg/L at MB1, MB5, MB9, MB10 and MB14, to 7.8 mg/L at MB12. The aluminium concentration in groundwater exceeded the long-term (up to 100 years) irrigation guideline concentration of 5 mg/L at MB12.
- Hexavalent chromium concentrations were below the laboratory LOR of 0.004 mg/L. Total chromium concentrations in groundwater were recorded at less than the laboratory LOR of 0.001 mg/L. Concentrations of hexavalent chromium were lower than the long-term (up to 100 years) irrigation guideline concentration of 0.1 mg/L.
- Iron concentrations ranged from 0.036 mg/L at MB1, to 30 mg/L at MB12. Iron concentrations at monitoring points MB9 and MB12 exceeded the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Manganese concentrations ranged from 0.012 mg/L at MB10 to 4.4 mg/L at MB9. Manganese concentrations at locations MB5, MB9 and MB12 exceeded the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Total organic carbon (TOC) in groundwater ranged from 1.0 mg/L at MB10 to 8.4 mg/L at MB5.
- Total phenols were recorded at concentrations below the laboratory LOR of 0.05 mg/L at all groundwater monitoring points.
- Organochlorine pesticides and organophosphorus pesticides were below respective laboratory LORs at all groundwater monitoring points.
- Total petroleum hydrocarbons (TPH) and total recoverable hydrocarbons (TRH) were below respective laboratory LORs at all groundwater monitoring points, with the exception of:
 - TPH C₆-C₉ fraction at MB12 (0.044 mg/L).

Leachate

The leachate sample collected from LW1 was couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Leachate quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH was recorded at 7.2, noted to be slightly alkaline.
- Total alkalinity was recorded at 240 mg/L, which was below the guideline hardness value for potential fouling of waters (350 mg/L).
- The recorded chloride concentration was 190 mg/L, and below the guideline value for protection of moderately sensitive crops (350 mg/L).
- The fluoride concentration of leachate was recorded to be below the laboratory LOR of 0.1 mg/L, and below the guideline value of 1 mg/L for long term irrigation use (up to 100 years).
- The leachate sulfate concentration was recorded to be 36 mg/L.
- Calcium in leachate was recorded to be 73 mg/L.
- Magnesium in leachate was recorded to be 25 mg/L.
- Potassium in leachate was recorded to be 45 mg/L.
- Sodium in leachate was recorded to be 97 mg/L. The sodium concentration was below the guideline level for irrigation to moderately sensitive crops (230 mg/L).
- Total organic carbon (TOC) was recorded at 6.8 mg/L.
- The ammonia concentration of leachate was recorded to be 0.10 mgN/L.
- The nitrate concentration of leachate was recorded to be 2.8 mgN/L.
- Iron in leachate was recorded to be 0.028 mg/L, and below the long term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Manganese in leachate was recorded to be 0.11mg/L, and below the long term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Total phenolics in leachate were recorded at below the laboratory LOR of 0.05 mg/L.

Accumulated Landfill Gas Monitoring

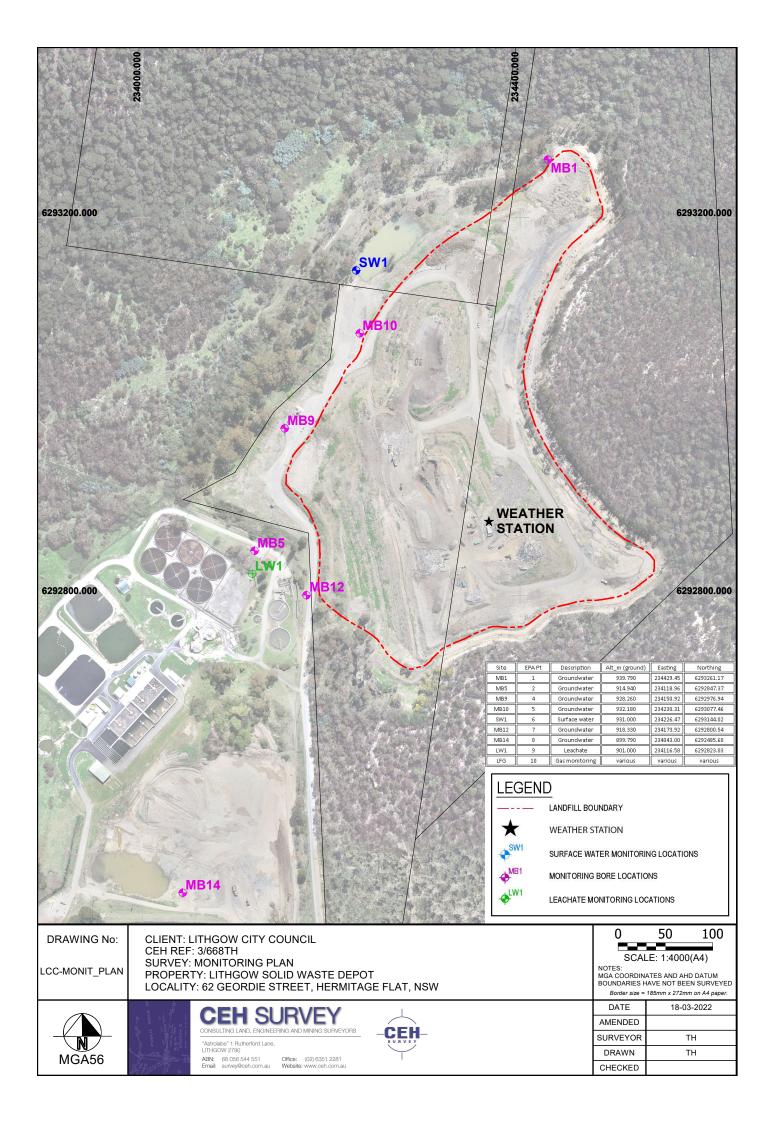
Accumulated (building) gas methane monitoring is conducted using a zeroed and calibrated methane gas detector, currently the Ventis MX4 Gas Meter. The threshold level for closer investigation and potential action is 12,500 parts per million (1.25 % v/v) of methane in any building on the facility or

within 250 m of landfilled areas. If methane is detected above this limit, daily testing is recommended until ventilation or other measures have controlled the methane concentration. The monitoring frequency is in accordance with EPL requirements.

The following procedure is used to monitor accumulated landfill gas:

- 1. Before starting, prepare field notebook and check that gas analyser is working. Date, time and person(s) conducting monitoring are all recorded.
- 2. All enclosed buildings within 250 m of active or capped areas of landfill are monitored. All rooms are investigated, with the gas meter allowed to detect for a period of approximately one minute in each.
- 3. Starting in the middle of each room, with the instrument probe at head height, the ambient concentration of methane present is recorded. Locations or features such as service ingress points, floor cracks / penetrations, skirting boards and joins between walls and floors are subsequently investigated.
- 4. Larger spaces also have a perimeter walk conducted as well as investigation of alcoves and pits.
- 5. The highest concentration of methane found at any location in each structure is recorded.

Gas concentrations in buildings and sheds within the required monitoring distance of 250 metres of filled areas were all below the respective threshold concentration of 1.25 % (v/v) during the monthly monitoring rounds conducted in February 2024 to May 2024. Results of gas monitoring are included in **Table 3** (attached)


The next routine monitoring for groundwater, leachate and accumulated landfill gas is scheduled for November 2024. Surface water monitoring is required to take place any calendar month when a surface water discharge is recorded. Please do not hesitate to contact us with any questions or comments you may have regarding this report.

Yours sincerely

BRENDAN STUART Senior Environmental Scientist

No. of Attachments – 5:

Environmental Monitoring Point Locations Table 1 – Groundwater Level Measurements Table 2 – Results of Laboratory Analyses (Groundwater & Leachate) – May 2024 Table 3 – Accumulated Landfill Gas Monitoring SGS Laboratories Analytical Reports – May 2024

TABLE 1: LITHGOW SOLID WASTE FACILITY - GROUNDWATER LEVEL RESULTS

13-May-24

Ground Water Levels:

Piezometer Details:

	Ground Elev (mAHD)	Stickup (m)	Elevation Top PVC (mAHD)	Date	Measured (m)	GWL (mAHD)	Well Depth (m)	Well Base (mAHD)	Water Column (m)
MB1	939.790	0.86	940.650	13/05/2024	3.67	936.98	6.5	934.15	2.83
MB5	914.940	0.80	915.740	13/05/2024	2.76	912.98	9.8	905.94	7.04
MB6B	946.290	0.75	947.040	13/05/2024	NMWL	-	19.3	927.74	nil
MB9	928.260	0.69	928.950	13/05/2024	11.80	917.15	17.1	911.85	5.30
MB10	932.180	0.73	932.910	13/05/2024	5.59	927.32	13.7	919.21	8.11
MB12	918.330	0.76	919.090	13/05/2024	7.56	911.53	22.3	896.84	14.69
MB14	899.790	0.78	900.570	13/05/2024	2.46	898.11	17.7	882.87	15.24

Definitions:

Stickup:	Height of piezometer pipe above ground surface.
Ground Elev:	Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are
	measured to the same datum, hence Piezo GWLs are relative to each other.
GWL:	Actual elevation of groundwater at the piezometer relative to an arbitrary datum.
Measured:	Depth of groundwater measured from the top of the piezometer pipe.

	MB1		MB5		MB6B		MB9		MB10		MB12		MB14	
Date	Measured	GWL (mAHD)												
25-Oct-11	NMWL		3.20	912.54	9.92	937.12	12.62	916.33	5.77	927.14	8.69	910.40	2.80	897.77
08-Feb-12	5.85	934.80	3.26	912.48	4.68	942.36	12.71	916.24	5.83	927.08	8.77	910.32	NMWL	
15-Mar-12	3.11	937.54	2.29	913.45	7.82	939.22	11.56	917.39	5.51	927.40	7.95	911.14	2.64	897.93
24-Apr-12	NMWL		2.55	913.19	7.47	939.57	12.10	916.85	5.78	927.13	8.24	910.85	2.67	897.90
31-May-12	5.55	935.10	3.07	912.67	9.71	937.33	12.73	916.22	6.04	926.87	8.43	910.66	2.64	897.93
30-Oct-12	NMWL		3.29	912.45	14.64	932.40	13.33	915.62	6.19	926.72	8.90	910.19	3.11	897.46
17-Apr-13	5.81	934.84	2.87	912.87	13.55	933.49	12.80	916.15	6.10	926.81	8.50	910.59	2.91	897.66
23-Oct-13	NMWL		3.44	912.30	13.97	933.07	13.60	915.35	6.35	926.56	9.01	910.08	3.09	897.48
02-Apr-14	4.90	935.75	3.98	911.76	11.00	936.04	13.66	915.29	5.75	927.16	9.04	910.05	3.20	897.37
02-Jun-14	NMWL		3.96	911.78	NMWL									
21-Oct-14	NMWL		3.81	911.93	11.41	935.63	13.13	915.82	6.01	926.90	8.89	910.20	2.97	897.60
21-Apr-15	NMWL		3.56	912.18	14.98	932.06	13.19	915.76	6.26	926.65	9.06	910.03	3.27	897.30
13-Oct-15	NMWL		3.34	912.40	12.18	934.86	13.30	915.65	6.30	926.61	8.35	910.74	3.06	897.51
15-May-17	6.36	934.30	3.37	912.38	11.88	935.16	13.09	915.86	6.58	926.34	7.45	911.64	3.05	897.52
13-Nov-17	NMWL		3.80	911.94	12.15	934.89	13.84	915.11	6.63	926.28	8.70	910.39	3.29	897.28
29-May-18	NMWL		4.19	911.55	12.38	934.66	13.99	914.96	6.83	926.08	9.84	909.25	3.50	897.07
13-Nov-18	NMWL		3.80	911.94	12.15	934.89	13.84	915.11	6.63	926.28	8.70	910.39	3.29	897.28
06-May-19	NMWL		4.05	911.69	13.31	933.73	13.48	915.47	6.13	926.78	9.45	909.64	3.20	897.37
19-Nov-19	NMWL		4.58	911.16	14.25	932.79	14.21	914.74	6.86	926.05	9.95	909.14	3.36	897.21
08-Jul-20	NMWL		2.52	913.22	15.40	931.64	12.52	916.43	5.73	927.18	8.97	910.12	2.91	897.66
10-Dec-20	NMWL		NMWL		14.85	932.19	12.39	916.56	5.71	927.20	6.35	912.74	3.89	896.68
20-Apr-21	NMWL		NMWL		NMWL		11.97	916.98	5.60	927.31	6.79	912.30	3.96	896.61
05-Jul-21	NMWL		3.65	912.09	NMWL									
24-Nov-21	NMWL		2.90	912.84	NMWL		11.91	917.04	5.70	927.21	6.69	912.40	2.45	898.12
18-May-22	NMWL		2.79	912.95	NMWL		12.62	916.33	6.20	926.71	6.29	912.80	2.50	898.07
16-Feb-23	NMWL		2.28	913.46	NMWL		11.90	917.05	6.04	926.87	6.74	912.35	2.84	897.73
17-May-23	NMWL		3.32	912.42	NMWL		12.37	916.58	6.29	926.62	6.60	912.49		
07-Jun-23													2.95	897.62
28-Nov-23	NMWL		3.65	912.09	NMWL		13.65	915.30	6.33	926.58	8.06	911.03	2.89	897.68
13-May-24	3.67	936.98	2.76	912.98	NMWL		11.80	917.15	5.59	927.32	7.56	911.53	2.46	898.11

TABLE 2: LITHGOW SOLID WASTE FACILITY - RESULTS OF LABORATORY ANALYSIS MAY 2024

GROUNDWATER & LEACHATE

				Sample ID	MB1	MB5	MB9	MB10	MB12	MB14	LW1
				Date / Time	13/05/2024	13/05/2024	13/05/2024	13/05/2024	13/05/2024	13/05/2024	13/05/2024
Group	Analyte	LOR	Units	Criteria	PS	PS	PS	PS	PS	PS	PS
Physical Parameters	pH (Lab)	0	No unit	6.5 - 8.5	5.6	6.4	6.6	6.2	4.1	6.9	7.2
	Electrical Conductivity (Lab)	2	μS/cm	4478	100	1300	690	110	1100	710	-
	Total Dissolved Solids	10	mg/L	-	57	820	300	84	730	480	-
	Chemical Oxygen Demand	10	mg/L	-	< 10	26	13	< 10	28	< 10	
Alkalinity	Total Alkalinity as CaCO3	5	mg/L	350	14	390	290	19	< 5	350	240
Anions	Chloride	1	mg/L	350	10	230	36	9.6	310	35	190
	Fluoride	0.1	mg/L	1	< 0.1	< 0.1	< 0.1	< 0.1	0.15	< 0.1	< 0.1
	Sulfate (SO4)	1	mg/L	-	8	33	<1	12	120	49	36
Cations	Calcium (Ca)	0.1	mg/L	1000	3.8	100	53	5.6	22	100	73
	Magnesium (Mg)	0.1	mg/L	-	3.2	34	14	4.7	18	32	25
	Potassium (K)	0.2	mg/L		2.4	60	27	2	18	10	45
	Sodium (Na)	0.1	mg/L	230	6.6	120	24	6.5	120	18	97
Forms of Carbon	Total Organic Carbon	0.2	mg/L	-	3.8	8.4	4	1	7.4	3.2	6.8
Nutrients	Ammonia (NH3) as N	0.01	mg/L	-	0.03	4.7	11	0.01	11	0.24	0.1
	Nitrate (NO3) as N	0.005	mg/L	-	0.14	0.78	0.21	0.36	0.006	0.008	2.8
	Total Phosphorus	0.02	mg/L	0.05	0.23	0.11	0.07	0.08	0.09	0.07	
Trace Metals	Aluminium (Al)	0.005	mg/L	5	< 0.005	< 0.005	< 0.005	< 0.005	7.8	< 0.005	
	Chromium (Cr)	0.001	mg/L		< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	Hexavalent Chromium (Cr-VI)	0.001	mg/L	0.1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
	Iron (Fe)	0.004	mg/L	0.1	0.036	0.047	1.8	0.1	30	< 0.004	0.028
				0.2							
Phenolics	Manganese (Mn)	0.001	mg/L		< 0.018 < 0.05	0.96 < 0.05	4.4 < 0.05	0.012 < 0.05	1.2 < 0.05	0.084 < 0.05	0.11 < 0.05
	Total Phenols		mg/L								< 0.05
OC Pesticides	Aldrin	0.1	μg/L	<u>⊢ ·</u>	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Alpha BHC	0.1	μg/L	<u>⊢ · </u>	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Alpha Chlordane	0.1	μg/L	<u> · </u>	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Alpha Endosulfan	0.1	μg/L	·	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Beta BHC	0.1	μg/L	- ·	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Beta Endosulfan	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Delta BHC	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Dieldrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Endosulfan sulphate	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Endrin	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Endrin aldehyde	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Endrin ketone	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Heptachlor	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Heptachlor epoxide	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
		0.1		-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Hexachlorobenzene (HCB)	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	Lindane (gamma BHC)		μg/L						< 0.1	< 0.1	
	Methoxychlor	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1			
	p,p'-DDD	0.1	μg/L	· ·	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
	p,p'-DDE	0.1	μg/L	· ·	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	p,p'-DDT	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	o,p'-DDD	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	o,p'-DDT	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	o,p'-DDE	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Gamma Chlordane	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	trans-Nonachlor	0.1	μg/L	-	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Isodrin	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Mirex	0.1	μg/L		< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-
	Total OC Pesticides	1	μg/L		<1	<1	<1	<1	<1	<1	
OP Pesticides	Azinphos-methyl	0.2	μg/L		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
	Bromophos Ethyl	0.2	μg/L		< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
	Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	μg/L	<u> </u>	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
	Diazinon (Dimpylate)	0.2	μg/L μg/L		< 0.2	< 0.2	< 0.2	< 0.2	< 0.5	< 0.5	
	Diazinon (Dimpylate) Dichlorvos	0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
			μg/L								
	Dimethoate	0.5	μg/L	- · · ·	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	· · ·
	Ethion	0.2	μg/L				< 0.2	< 0.2	< 0.2		-
	Fenitrothion	0.2	μg/L	-	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	
	Malathion	0.2	μg/L	· ·	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-
	Parathion-ethyl (Parathion)	0.2	μg/L	· ·	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	-
	Methidathion	0.5	μg/L		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-
Total Petroleum Hydrocarbons	TRH C6-C9	40	μg/L		< 40	< 40	< 40	< 40	44	< 40	-
	TRH C10-C14	50	μg/L	· · ·	< 50	< 50	< 50	< 50	< 50	< 50	-
	TRH C15-C28	200	μg/L		< 200	< 200	< 200	< 200	< 200	< 200	-
	TRH C29-C36	200	μg/L	-	< 200	< 200	< 200	< 200	< 200	< 200	-
	TRH C37-C40	200	μg/L		< 200	< 200	< 200	< 200	< 200	< 200	-
	TRH C10-C40	320	μg/L	· · ·	< 320	< 320	< 320	< 320	< 320	< 320	
Total Recoverable Hydrocarbons	TRH C6-C10	50	μg/L	· · ·	< 50	< 50	< 50	< 50	< 50	< 50	
	TRH C6-C10 minus BTEX (F1)	50	μg/L	<u> </u>	< 50	< 50	< 50	< 50	< 50	< 50	
	TRH >C10-C16	60			< 60	< 60	< 60	< 60	< 60	< 60	
			μg/L								
	TRH >C10-C16 minus Naphthalene (F2)	60	μg/L	· ·	< 60	< 60	< 60	< 60	< 60	< 60	-
	TRH >C16-C34 (F3)	500	μg/L	<u>⊢ ·</u>	< 500	< 500	< 500	< 500	< 500	< 500	
	TRH >C34-C40 (F4)	500	μg/L	· ·	< 500	< 500	< 500	< 500	< 500	< 500	
BTEXN Analytes	Benzene (F0)	0.5	μg/L		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-

mg/L μg/L μS/cm LOR PS Criteria

miligrams per litre micrograms per litre micrograms per litre microsiemens per centimetre limit of reporting primary sample Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - Primary Industries: Water quality for Irrigation and general water use', 2000 within criteria criteria exceeded

TABLE 3: LITHGOW SOLID WASTE FACILITY - ACCUMULATED LANDFILL GAS MONITORING METHANE (as %, v/v)

		Date	07/06/2023	26/07/2023	31/08/2023	22/09/2023	19/10/2023	28/11/2023	05/12/2023	11/01/2024	22/02/2024	13/03/2024	09/04/2024	13/05/2024
Location	LOR	Units												
Site Shed	0.005	%	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Weighbridge	0.005	%	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Office (STP)	0.005	%	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Green Shed (STP)	0.005	%	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pump Room (STP)	0.005	%	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

LOR limit of reporting

ANALYTICAL REPORT

- CLIENT DETAILS		LABORATORY DE	TAILS
Contact	Brendan Stuart	Manager	Huong Crawford
Client	PREMISE	Laboratory	SGS Alexandria Environmental
Address	LEVEL 1 100 BRUNSWICK STREET FORTITUDE VALLEY QLD 4006	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 6939 5000	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	Brendan.stuart@premise.com.au	Email	au.environmental.sydney@sgs.com
Project	217500 - Lithgow SWF	SGS Reference	SE265172 R0
Order Number	217500	Date Received	15/5/2024
Samples	7	Date Reported	22/5/2024

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

- SIGNATORIES

Akheeqar BENIAMEEN Chemist

Shane MCDERMOTT Inorganic/Metals Chemist

Senior Chemist

Teresa NGUYEN Organic Chemist

Dong LIANG Metals/Inorganics Team Leader

AcmIn

Ly Kim HA Organic Section Head

уэль уэль гидац

Ying Ying ZHANG Laboratory Technician

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au Member of the SGS Group

Page 1 of 23

Volatile Petroleum Hydrocarbons in Water [AN433] Tested: 20/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
				-	-	-	-
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Benzene (F0)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
TRH C6-C9	µg/L	40	<40	<40	<40	<40	44
TRH C6-C10	μg/L	50	<50	<50	<50	<50	<50
TRH C6-C10 minus BTEX (F1)	μg/L	50	<50	<50	<50	<50	<50

			MB14
			WATER
PARAMETER	UOM	LOR	- 13/5/2024 SE265172.006
Benzene (F0)	μg/L	0.5	<0.5
TRH C6-C9	µg/L	40	<40
TRH C6-C10	µg/L	50	<50
TRH C6-C10 minus BTEX (F1)	µg/L	50	<50

SE265172 R0

TRH (Total Recoverable Hydrocarbons) in Water [AN403]

_ T	est	ed: '	16/5	/2024	

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
							-
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
TRH C10-C14	µg/L	50	<50	<50	<50	<50	<50
TRH C15-C28	µg/L	200	<200	<200	<200	<200	<200
TRH C29-C36	µg/L	200	<200	<200	<200	<200	<200
TRH C37-C40	µg/L	200	<200	<200	<200	<200	<200
TRH >C10-C16	µg/L	60	<60	<60	<60	<60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60	<60	<60	<60	<60
TRH >C16-C34 (F3)	µg/L	500	<500	<500	<500	<500	<500
TRH >C34-C40 (F4)	µg/L	500	<500	<500	<500	<500	<500
TRH C10-C40	µg/L	320	<320	<320	<320	<320	<320

			MB14
PARAMETER	UOM	LOR	WATER - 13/5/2024 SE265172.006
TRH C10-C14	μg/L	50	<50
TRH C15-C28	μg/L	200	<200
TRH C29-C36	µg/L	200	<200
TRH C37-C40	µg/L	200	<200
TRH >C10-C16	µg/L	60	<60
TRH >C10-C16 - Naphthalene (F2)	µg/L	60	<60
TRH >C16-C34 (F3)	µg/L	500	<500
TRH >C34-C40 (F4)	µg/L	500	<500
TRH C10-C40	µg/L	320	<320

SE265172 R0

OC Pesticides in Water [AN420] Tested: 16/5/2024

Hexachlorobenzene (HCB) Alpha BHC	UOM μg/L μg/L	LOR 0.1 0.1	WATER - 13/5/2024 SE265172.001 <0.1	WATER - 13/5/2024 SE265172.002	WATER - 13/5/2024 SE265172.003	WATER - 13/5/2024 SE265172.004	WATER - 13/5/2024
Hexachlorobenzene (HCB) Alpha BHC	μg/L μg/L	0.1	- 13/5/2024 SE265172.001	- 13/5/2024 SE265172.002	- 13/5/2024	- 13/5/2024	- 13/5/2024
Hexachlorobenzene (HCB) Alpha BHC	μg/L μg/L	0.1	SE265172.001	SE265172.002			
Hexachlorobenzene (HCB) Alpha BHC	μg/L μg/L	0.1			SE265172.003		000000470.000
Alpha BHC	µg/L		<0.1		<0.1	<0.1	SE265172.005
		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane (gamma BHC)	µg/L	0.4					
L La sta al-la s		0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDD	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin ketone	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	µg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	μg/L	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	µg/L	1	<1	<1	<1	<1	<1
Total OC	µg/L	1	<1	<1	<1	<1	<1

SE265172 R0

OC Pesticides in Water [AN420] Tested: 16/5/2024 (continued)

			MB14
			WATER
PARAMETER	UOM	LOR	13/5/2024
Hexachlorobenzene (HCB)	μg/L	0.1	SE265172.006
Alpha BHC	μg/L	0.1	<0.1
Lindane (gamma BHC)	μg/L	0.1	<0.1
Heptachlor	μg/L	0.1	<0.1
Aldrin	μg/L	0.1	<0.1
Beta BHC	μg/L	0.1	<0.1
Delta BHC	μg/L	0.1	<0.1
Heptachlor epoxide	μg/L	0.1	<0.1
o,p'-DDE	μg/L	0.1	<0.1
Alpha Endosulfan	μg/L	0.1	<0.1
Gamma Chlordane	μg/L	0.1	<0.1
Alpha Chlordane	μg/L	0.1	<0.1
trans-Nonachlor	μg/L	0.1	<0.1
p,p'-DDE	μg/L	0.1	<0.1
Dieldrin	μg/L	0.1	<0.1
Endrin	μg/L	0.1	<0.1
o,p'-DDD	μg/L	0.1	<0.1
o,p'-DDT	μg/L	0.1	<0.1
Beta Endosulfan	μg/L	0.1	<0.1
p,p'-DDD	μg/L	0.1	<0.1
p,p'-DDT	μg/L	0.1	<0.1
Endosulfan sulphate	μg/L	0.1	<0.1
Endrin aldehyde	µg/L	0.1	<0.1
Methoxychlor	μg/L	0.1	<0.1
Endrin ketone	μg/L	0.1	<0.1
Isodrin	µg/L	0.1	<0.1
Mirex	µg/L	0.1	<0.1
Total OC	µg/L	1	<1
Total OC	µg/L	1	<1

SE265172 R0

OP Pesticides in Water [AN420] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			- 13/5/2024	- 13/5/2024	- 13/5/2024	- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Dichlorvos	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	µg/L	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl	µg/L	0.2	<0.2	<0.2	<0.2	<0.2	<0.2

PARAMETER	UOM	LOR	MB14 WATER - 13/5/2024 SE265172.006
Dichlorvos	μg/L	0.5	<0.5
Dimethoate	µg/L	0.5	<0.5
Diazinon (Dimpylate)	µg/L	0.5	<0.5
Fenitrothion	µg/L	0.2	<0.2
Malathion	µg/L	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	µg/L	0.2	<0.2
Parathion-ethyl (Parathion)	µg/L	0.2	<0.2
Bromophos Ethyl	µg/L	0.2	<0.2
Methidathion	µg/L	0.5	<0.5
Ethion	µg/L	0.2	<0.2
Azinphos-methyl	μg/L	0.2	<0.2

Total Phenolics in Water [AN295] Tested: 17/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Total Phenois	mg/L	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
Total Phenols	mg/L	0.05	<0.05	<0.05

Anions by Ion Chromatography in Water [AN245] Tested: 20/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Fluoride	mg/L	0.1	<0.10	<0.10	<0.10	<0.10	0.15
Chloride	mg/L	1	10	230	36	9.6	310
Sulfate, SO4	mg/L	1	8.0	33	<1.0	12	120
Nitrate Nitrogen, NO3-N	mg/L	0.005	0.14	0.78	0.21	0.36	0.006

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
Fluoride	mg/L	0.1	<0.10	<0.10
Chloride	mg/L	1	35	190
Sulfate, SO4	mg/L	1	49	36
Nitrate Nitrogen, NO3-N	mg/L	0.005	0.008	2.8

Ammonia Nitrogen by Discrete Analyser [AN291] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Ammonia Nitrogen, NH₃ as N	mg/L	0.01	0.03	4.7	11	0.01	11

Ammonia Nitrogen, NH₃ as N	mg/L	0.01	0.24	0.10
PARAMETER	UOM	LOR	- 13/5/2024 SE265172.006	- 13/5/2024 SE265172.007
			MB14 WATER	LW1 WATER

SE265172 R0

Total Phosphorus by Kjeldahl Digestion DA in Water [AN279/AN293(Sydney only)] Tested: 20/5/2024

				1	1	1	
			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Total Phosphorus (Kjeldahl Digestion) as P	mg/L	0.02	0.23	0.11	0.07	0.08	0.09

			MB14
			WATER
PARAMETER	UOM	LOR	SE265172.006
Total Phosphorus (Kjeldahl Digestion) as P	mg/L	0.02	0.07

pH in water [AN101] Tested: 15/5/2024

pH**	No unit	-	5.6	6.4	6.6	6.2	4.1
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
							-
			WATER	WATER	WATER	WATER	WATER
			MB1	MB5	MB9	MB10	MB12

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
pH**	No unit	-	6.9	7.2

Conductivity and TDS by Calculation - Water [AN106] Tested: 15/5/2024

			MB1	MB5	MB9	MB10	MB12
					in Do		
			WATER	WATER	WATER	WATER	WATER
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Conductivity @ 25 C	µS/cm	2	100	1300	690	110	1100

			MB14
			WATER
			13/5/2024
PARAMETER	UOM	LOR	SE265172.006
Conductivity @ 25 C	µS/cm	2	710

Total Dissolved Solids (TDS) in water [AN113] Tested: 17/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Total Dissolved Solids Dried at 175-185°C	mg/L	10	57	820	300	84	730

			MB14
			WATER
PARAMETER	UOM	LOR	SE265172.006
Total Dissolved Solids Dried at 175-185°C	mg/L	10	480

Alkalinity [AN135] Tested: 20/5/2024

Total Alkalinity as CaCO3	mg/L	-	14	390	290	19	<5
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
			WATER	WATER	WATER	WATER	WATER
							111212
			MB1	MB5	MB9	MB10	MB12

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
Total Alkalinity as CaCO3	mg/L	5	350	240

COD in Water [AN179/AN181] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
							-
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Chemical Oxygen Demand	mg/L	10	<10	26	13	<10	28

			MB14
			WATER
			13/5/2024
PARAMETER	UOM	LOR	SE265172.006
Chemical Oxygen Demand	mg/L	10	<10

Forms of Carbon [AN190] Tested: 20/5/2024

Total Organic Carbon as NPOC	mg/L	0.2	3.8	8.4	4.0	1.0	7.4
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
			WATER	WATER	WATER	WATER	WATER
			IVID I	MDS	WD9	MIDIU	MID12
			MB1	MB5	MB9	MB10	MB12

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	иом	LOR	SE265172.006	SE265172.007
Total Organic Carbon as NPOC	mg/L	0.2	3.2	6.8

SE265172 R0

Hexavalent Chromium in water by Discrete Analyser [AN283] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Hexavalent Chromium, Cr6+	mg/L	0.004	<0.004	<0.004	<0.004	<0.004	<0.004

			MB14
			WATER
			13/5/2024
PARAMETER	UOM	LOR	SE265172.006
Hexavalent Chromium, Cr6+	mg/L	0.004	<0.004

Metals in Water (Dissolved) by ICPOES [AN320] Tested: 21/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	
			- WATER	WATER	VVATER	VVATER	WATER
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Calcium, Ca	mg/L	0.1	3.8	100	53	5.6	22
Magnesium, Mg	mg/L	0.1	3.2	34	14	4.7	18
Sodium, Na	mg/L	0.1	6.6	120	24	6.5	120
Potassium, K	mg/L	0.2	2.4	60	27	2.0	18

			MB14	LW1
			WATER	WATER
			- 13/5/2024	- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
Calcium, Ca	mg/L	0.1	100	73
Magnesium, Mg	mg/L	0.1	32	25
Sodium, Na	mg/L	0.1	18	97
Potassium, K	mg/L	0.2	10	45

Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
				13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Aluminium	µg/L	5	<5	<5	<5	<5	7800
Iron	µg/L	5	36	47	1800	100	30000
Manganese	µg/L	1	18	960	4400	12	1200

			MB14	LW1
			WATER	WATER
				- 13/5/2024
PARAMETER	UOM	LOR	SE265172.006	SE265172.007
Aluminium	µg/L	5	<5	-
Iron	µg/L	5	<5	28
Manganese	µg/L	1	84	110

SE265172 R0

Trace Metals (Total) in Water by ICPMS [AN022/AN318] Tested: 16/5/2024

			MB1	MB5	MB9	MB10	MB12
			WATER	WATER	WATER	WATER	WATER
			13/5/2024	13/5/2024	13/5/2024	13/5/2024	13/5/2024
PARAMETER	UOM	LOR	SE265172.001	SE265172.002	SE265172.003	SE265172.004	SE265172.005
Total Chromium	µg/L	1	<1	<1	<1	<1	<1

			MB14
			WATER
			13/5/2024
PARAMETER	UOM	LOR	SE265172.006
Total Chromium	µg/L	1	<1

METHOD	METHODOLOGY SUMMARY
AN020	Unpreserved water sample is filtered through a 0.45μm membrane filter and acidified with nitric acid similar to ΑΡΗΑ3030Β.
AN022/AN318	Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS technique, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN022	The water sample is digested with Nitric Acid and made up to the original volume similar to APHA3030E.
AN101	pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.
AN106	Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as μ mhos/cm or μ S/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B.
AN106	Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.
AN113	Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available. Reference APHA 2540 C.
AN113	The Total Dissolved Solids residue may also be ignited at 550 C and volatile TDS (Organic TDS) and non-volatile TDS (Inorganic) can be determined.
AN135	Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135
AN181	Analysis of COD by Semi Closed Reflux: The sample is refluxed with strong acid and a known excess of oxidant. After digestion the unreduced oxidant is back titrated to determine the amount of oxidant consumed. The chemically oxidised matter is calculated in terms of oxygen equivalents. Reference APHA 5220 B.
AN190	TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.
AN190	Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.
AN245	Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B
AN279/AN293(Sydney)	The sample is digested with Sulphuric acid, K2SO4 and CuSO4. All forms of phosphorus are converted into orthophosphate. The digest is cooled and placed on the discrete analyser for colorimetric analysis.
AN283	Hexavalent Chromium via DA: Soluble hexavalent chromium forms a red/violet colour with diphenylcarbazide in acidic solution. This procedure is very sensitive and nearly specific for Cr 6+. If total chromium is also measured the trivalent form of chromium Cr3+ can be calculated from the difference (Total Cr - Cr6+). Reference APHA3500CrB.
AN291	Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 660 nm by Discrete Analyser.
AN295	The water sample or extract of sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate(III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.
AN318	Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).
AN320	Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.
AN320	Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.

AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). Where F2 is corrected for Naphthalene, the VOC data for Naphthalene is used.
AN403	Additionally, the volatile C6-C9/C6-C10 fractions may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Recoveerable Hydrocarbons - Silica (TRH-Silica) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
Calculation	Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L. If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

FOOTNOTES -

*	NATA accreditation does not cover
	the performance of this service.
**	Indicative data, theoretical holding
	time exceeded.

*** Indicates that both * and ** apply.

Not analysed.
NVL Not validated.
IS Insufficient sample for analysis.
LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <u>www.sgs.com.au/en-gb/environment-health-and-safety</u>.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.