


62 075 657 359 Suite 3, 60-62 McNamara Street, Orange, NSW, 2800, Australia (02) 6393 5000 orange@premise.com.au **Premise.com.au** 

Our Ref: 217501\_LET\_009

6 February 2025

Lithgow City Council PO Box 19, 180 Mort Street Lithgow NSW 2790

Attention: Jemma Houlison, Waste Compliance Officer

# **Environmental Monitoring of Portland Waste Disposal Depot, Under Environment Protection Licence 10936**

Premise has completed annual groundwater monitoring at Portland Waste Disposal Depot, located off the Portland Cullen Bullen Road, approximately 2 km north of Portland, NSW.

#### **Groundwater Levels**

Groundwater was gauged at six (6) groundwater monitoring wells across the site. Groundwater gauging data is included in Table 1 (attached), and elevation trends are shown on **Figure 1**.

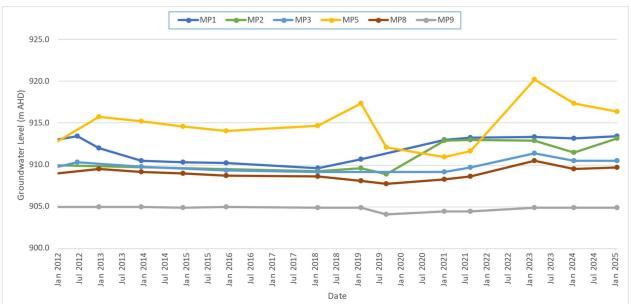



Figure 1 – Portland Waste Disposal Depot – Groundwater Elevations



#### Observations were as follows:

- Depths to groundwater ranged from artesian (overflowing) conditions observed at MP9, to 21.65 metres below ground level (mbgl) at MP5. Corrected groundwater elevations ranged from 904.90 metres Australian Height Datum (mAHD) at MP9, to 916.35 mAHD at MP5.
- Inference of groundwater elevations, calculated from available survey data from installed groundwater monitoring wells, indicates a flow direction to the north-west.

## **Groundwater Quality**

All groundwater samples were able to be collected from their sampling points. Samples were couriered to SGS Laboratories in Alexandria, NSW, who are NATA accredited to perform the scheduled analysis. Results of analysis are included in **Table 2** (attached), and laboratory certificates have also been appended to this letter.

Groundwater quality has been assessed by comparison to criteria (where available) adopted from Australian and New Zealand Environment and Conservation Council (ANZECC) Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* 2000 – Primary Industries: Water quality for irrigation and general water use.

- Laboratory measured pH ranged from 4.4 at MP2 and MP3 to 6.9 at MP1, and was outside the guideline range considered suitable for pumping, irrigation, and stock watering (6.0 to 8.5 pH units) at MP2 and MP3.
- Electrical conductivity (EC) ranged from 660 μS/cm at MP2 to 3,400 μS/cm at MP9. Corresponding total dissolved solids (TDS) concentrations (respectively 442 mg/L to 2,278 mg/L) indicate that groundwater did not exceed the livestock watering 'loss of production' TDS tolerance limit for the most sensitive livestock category, poultry (3,000 mg/L, ANZECC & ARMCANZ, 2000).
- Total alkalinity in groundwater ranged from below the laboratory limit of reporting (LOR) of 5 mgCaCO₃/L at MP2 and MP3 to 680 mgCaCO₃/L at MP9. Groundwater alkalinity at MP1, MP5, MP8, and MP9 exceeded the guideline hardness value for potential fouling of waters (350 mg/L).
- Groundwater chloride concentrations ranged from 81 mg/L at MP1 to 470 mg/L at MP3. The
  chloride concentration recorded at MP3 exceeded the guideline value for protection of moderately
  sensitive crops (350 mg/L).
- Fluoride concentrations in groundwater ranged from below the laboratory LOR of 0.1 mg/L at MP1, MP8, and MP9 to 0.7 mg/L at MP3. All concentrations were below the guideline value of 1 mg/L for long-term irrigation use (up to 100 years).
- Sulfate concentrations in groundwater ranged from 160 mg/L at MP2 to 1,300 mg/L at MP9.
- Calcium concentrations ranged from 34 mg/L at MP2 to 410 mg/L at MP9.
- Magnesium concentrations ranged from 11 mg/L at MP2 to 260 mg/L at MP9.
- Potassium concentrations ranged from 6.4 mg/L at MP9 to 130 mg/L at MP1.



- Concentrations of sodium ranged from 69 mg/L at MP1 to 370 mg/L at MP3. Sodium concentrations in the groundwater sample collected from MP3 exceeded the guideline level for irrigation to moderately sensitive crops (<230 mg/L).</li>
- Total organic carbon (TOC) in groundwater ranged from 1.6 mg/L at MP9 to 59 mg/L at MP1.
- Ammonia concentrations in groundwater ranged from 0.04 mgN/L at MP2, MP3 and MP8. to 3.2 mgN/L at MP1.
- Nitrate concentrations ranged from below the laboratory LOR of 0.005 mgN/L at MP1, MP5, MP8, and MP9 to 130 mgN/L at MP3.
- Iron concentrations ranged from below the laboratory LOR of 0.005 mg/L at MP5 and MP8, to 0.16 mg/L at MP2. Iron concentrations recorded in all collected groundwater samples remained below the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Manganese concentrations ranged from 0.26 mg/L at MP5 to 4.0 mg/L at MP8. Manganese concentrations at all locations exceeded the long-term (up to 100 years) irrigation guideline concentration of 0.2 mg/L.
- Total phenols were below the laboratory LOR of 0.05 mg/L at all groundwater monitoring points.
- Organochlorine pesticides were below respective laboratory LORs at all groundwater monitoring points.

## **Surface Water**

The surface water monitoring point SW1 was inspected in January 2025. No discharge was occurring at the time of inspection, and no evidence of discharge(s) having occurred prior was apparent.





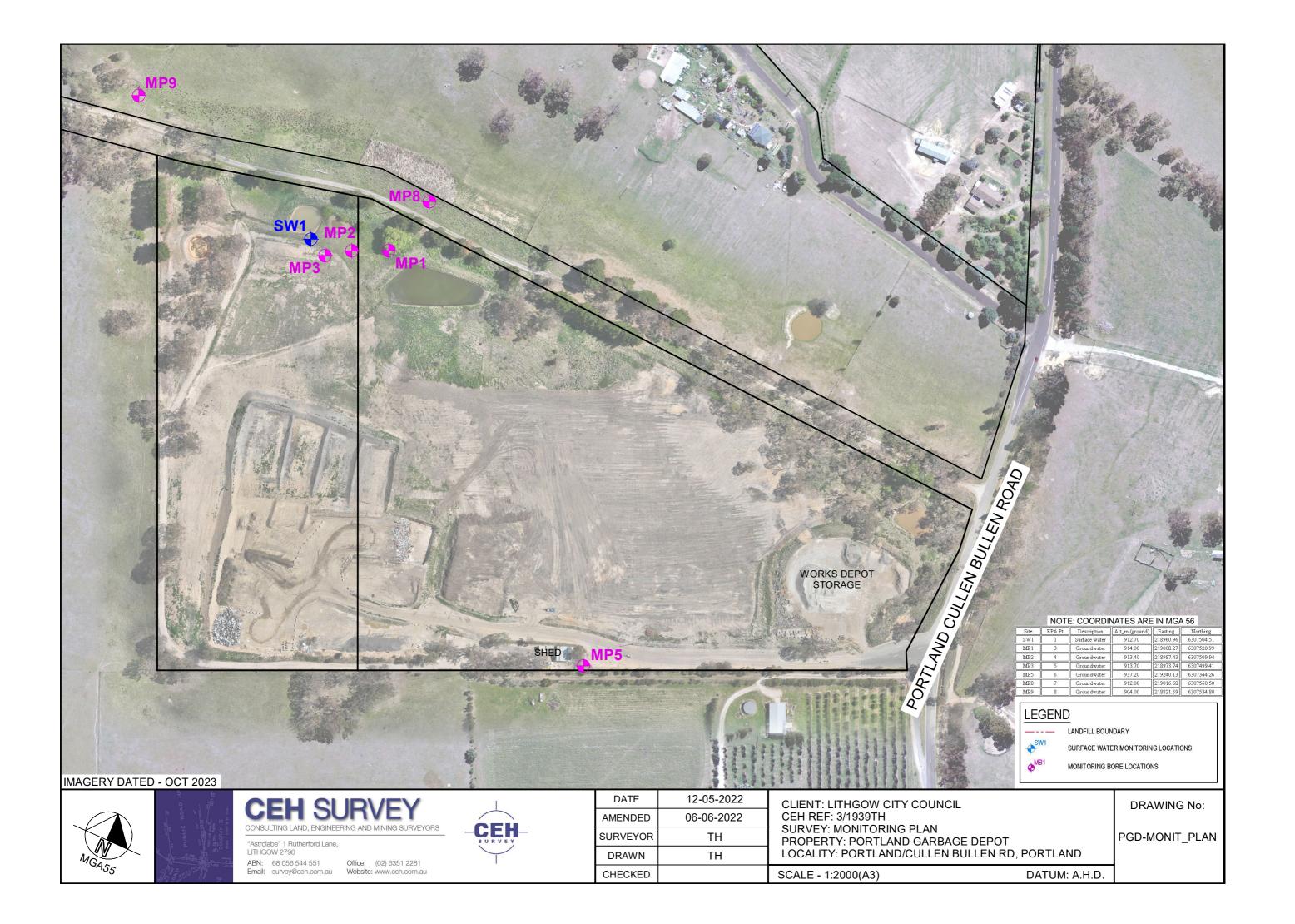
The next routine monitoring for groundwater is scheduled for January 2026. Surface water monitoring is required to take place any calendar month when a surface water discharge is recorded at an interval of not less than once every 6 months.

Please do not hesitate to contact us with any questions or comments you may have regarding this report.

Yours sincerely

**BRENDAN STUART** 

Senior Environmental Scientist


No. of Attachments – 4:

Environmental Monitoring Point Locations

Table 1 – Groundwater Level Measurements

Table 2 – Results of Laboratory Analyses (Groundwater) – January 2025

SGS Laboratories Analytical Reports – January 2025





#### TABLE A1: PORTLAND WASTE DISPOSAL DEPOT - GROUNDWATER LEVEL RESULTS

**Ground Water Levels:** 15-Jan-25

#### Piezometer Details:

|     | Ground      | Stickup | Elevation Top |            |              |            |                | Well Base | Water Column |
|-----|-------------|---------|---------------|------------|--------------|------------|----------------|-----------|--------------|
|     | Elev (mAHD) | (m)     | PVC (mAHD)    | Date       | Measured (m) | GWL (mAHD) | Well Depth (m) | (mAHD)    | (m)          |
| MP1 | 913.700     | 0.40    | 914.100       | 15/01/2025 | 0.64         | 913.46     | 6.0            | 908.09    | 5.37         |
| MP2 | 913.600     | 0.20    | 913.800       | 15/01/2025 | 0.62         | 913.18     | 5.0            | 908.80    | 4.38         |
| MP3 | 914.200     | 0.60    | 914.800       | 15/01/2025 | 4.34         | 910.46     | 5.8            | 909.00    | 1.46         |
| MP5 | 937.200     | 0.80    | 938.000       | 15/01/2025 | 21.65        | 916.35     | 61.3           | 876.70    | 39.65        |
| MP8 | 911.800     | 0.50    | 912.300       | 15/01/2025 | 2.65         | 909.65     | 21.5           | 890.79    | 18.86        |
| MP9 | 903.800     | 1.10    | 904.900       | 15/01/2025 | 0.00         | 904.90     | 16.7           | 888.20    | 16.70        |

#### Definitions:

Stickup: Height of piezometer pipe above ground surface.

Ground Elev: Actual elevation of ground at the piezometer relative to an arbitrary datum. All ground elevations are

measured to the same datum, hence Piezo GWLs are relative to each other.

Actual elevation of groundwater at the piezometer relative to an arbitrary datum.

GWL: Actual elevation of groundwater at the piezometer relative to an

NMWL: No Measured Water Level

Measured: Depth of groundwater measured from the top of the piezometer pipe.

|           | MP1      |            | MP2      |            | MP3      |            | MP5      |            | MP8          |            | MP9      |            |
|-----------|----------|------------|----------|------------|----------|------------|----------|------------|--------------|------------|----------|------------|
| Date      | Measured | GWL (mAHD) | Measured     | GWL (mAHD) | Measured | GWL (mAHD) |
| 01-Jun-10 | 4.21     | 909.89     | NMWL     |            | NMWL     |            | 30.20    | 907.80     | 4.48         | 907.82     | 0.00     | 904.90     |
| 15-Dec-10 | 1.23     | 912.87     | NMWL     |            | NMWL     |            | 27.37    | 910.63     | 3.44         | 908.86     | -0.05    | 904.95     |
| 29-Jun-11 | 1.30     | 912.80     | NMWL     |            | 5.65     | 909.15     | 25.67    | 912.33     | 3.62         | 908.68     | -0.05    | 904.95     |
| 27-Jul-11 | 1.57     | 912.53     | NMWL     |            | NMWL     |            | NMWL     |            | NMWL         |            | NMWL     |            |
| 06-Dec-11 | 1.14     | 912.96     | 3.85     | 909.95     | NMWL     |            | 25.40    | 912.60     | Bore Damaged |            | -0.05    | 904.95     |
| 13-Jun-12 | 0.70     | 913.40     | NMWL     |            | 4.48     | 910.32     | NMWL     |            | NMWL         |            | NMWL     |            |
| 16-Dec-12 | 2.09     | 912.01     | NMWL     |            | NMWL     |            | 22.22    | 915.78     | 2.77         | 909.53     | -0.05    | 904.95     |
| 11-Dec-13 | 3.57     | 910.53     | NMWL     |            | 4.98     | 909.82     | 22.79    | 915.21     | 3.16         | 909.14     | -0.05    | 904.95     |
| 04-Dec-14 | 3.80     | 910.30     | NMWL     |            | NMWL     |            | 23.43    | 914.57     | 3.33         | 908.97     | 0.05     | 904.85     |
| 03-Dec-15 | 3.84     | 910.26     | NMWL     |            | 5.45     | 909.35     | 23.97    | 914.03     | 3.57         | 908.73     | -0.05    | 904.95     |
| 24-Jan-18 | 4.46     | 909.64     | 4.56     | 909.24     | 5.68     | 909.12     | 23.30    | 914.70     | 3.68         | 908.62     | 0.05     | 904.85     |
| 30-Jan-19 | 3.40     | 910.70     | 4.18     | 909.62     | NMWL     |            | 20.61    | 917.39     | 4.23         | 908.07     | 0.05     | 904.85     |
| 02-Sep-19 | NMWL     |            | 4.92     | 908.88     | NMWL     |            | 25.93    | 912.07     | 4.61         | 907.69     | 0.87     | 904.03     |
| 05-Jan-21 | 1.11     | 912.99     | 0.9      | 912.90     | 5.61     | 909.19     | 27.05    | 910.95     | 4.04         | 908.26     | 0.49     | 904.41     |
| 19-Aug-21 | 0.85     | 913.25     | 0.84     | 912.96     | 5.13     | 909.67     | 26.35    | 911.65     | 3.69         | 908.61     | 0.50     | 904.40     |
| 15-Feb-23 | 0.72     | 913.38     | 0.92     | 912.88     | 3.43     | 911.37     | 17.82    | 920.18     | 1.85         | 910.45     | 0.00     | 904.90     |
| 17-Jan-24 | 0.91     | 913.19     | 2.33     | 911.47     | 4.32     | 910.48     | 20.60    | 917.40     | 2.82         | 909.48     | 0.00     | 904.90     |
| 15-Jan-25 | 0.64     | 913.46     | 0.62     | 913.18     | 4.34     | 910.46     | 21.65    | 916.35     | 2.65         | 909.65     | 0.00     | 904.90     |

TABLE 2: PORTLAND WASTE DISPOSAL DEPOT - RESULTS OF LABORATORY ANALYSIS
JANUARY 2025 GROUNDWATER



|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |        |         |         | MP-9               |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--------|---------|---------|--------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | -,-,-   |        |         |         | 15/01/2025 3:10 PM |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | -       |        |         | -       | PS                 |
| ,                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |        |         |         | 6.8                |
| , , ,                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |         |         |        |         |         | 3400               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |         |         | -      |         |         | 680                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |        |         |         | 320                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |        |         |         | < 0.1              |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |         |        |         |         | 1300               |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000    |         |         |        |         |         | 410                |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |         |         | -      |         | -       | 260                |
| Potassium (K)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       |         |         |        |         |         | 6.4                |
| . ,                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 230     |         |         |        |         |         | 210                |
| Total Organic Carbon    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       |         |         |        |         |         | 1.6                |
| Ammonia (NH3) as N      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       |         | 0.04    |        |         |         | 0.06               |
| Nitrate (NO3) as N      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.005 | 8.9     | 130    | < 0.005 | < 0.005 | -                  |
| Nitrate (NO3) as N      | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | -       | -       | -      | -       | -       | < 0.025            |
| Iron (Fe)               | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2     | 0.076   | 0.16    | 0.091  | < 0.005 | < 0.005 | < 0.005            |
| Manganese (Mn)          | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2     | 0.31    | 0.37    | 3.9    | 0.26    | 4       | 0.95               |
| Total Phenols           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.05  | < 0.05  | < 0.05 | < 0.05  | < 0.05  | < 0.05             |
| Aldrin                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Alpha BHC               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Alpha Chlordane         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Alpha Endosulfan        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Beta BHC                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Beta Endosulfan         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Delta BHC               | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Dieldrin                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Endosulfan sulphate     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Endrin                  | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Endrin aldehyde         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Endrin ketone           | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Heptachlor              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Heptachlor epoxide      | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Hexachlorobenzene (HCB) | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Lindane (gamma BHC)     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Methoxychlor            | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| p,p'-DDD                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| p,p'-DDE                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| p,p'-DDT                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| o,p'-DDD                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| o,p'-DDT                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| o,p'-DDE                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Gamma Chlordane         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| trans-Nonachlor         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Isodrin                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
| Mirex                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -       | < 0.1   | < 0.1   | < 0.1  | < 0.1   | < 0.1   | < 0.1              |
|                         | Sodium (Na)  Total Organic Carbon  Ammonia (NH3) as N  Nitrate (NO3) as N  Nitrate (NO3) as N  Iron (Fe)  Manganese (Mn)  Total Phenols  Aldrin  Alpha BHC  Alpha Chlordane  Alpha Endosulfan  Beta BHC  Beta Endosulfan  Delta BHC  Dieldrin  Endosulfan sulphate  Endrin  Endrin aldehyde  Endrin ketone  Heptachlor  Heptachlor epoxide  Hexachlorobenzene (HCB)  Lindane (gamma BHC)  Methoxychlor  p,p'-DDD  p,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDT  o,p'-DDC  Gamma Chlordane  trans-Nonachlor  Isodrin | pH (Lab) Electrical Conductivity (Lab) 2 Total Alkalinity as CaCO3 5 Chloride 1 Fluoride 0.1 Sulfate (SO4) 1 Calcium (Ca) 0.2 Magnesium (Mg) 0.1 Potassium (K) 0.1 Sodium (Na) Total Organic Carbon 0.2 Ammonia (NH3) as N 0.01 Nitrate (NO3) as N 0.025 Iron (Fe) 0.005 Manganese (Mn) 0.01 Total Phenols 0.05 Aldrin Alpha BHC 0.1 Alpha BHC 0.1 Alpha Chlordane 0.1 Beta BHC 0 | Analyte | Name    | Analyte | Name   | Analyte | Analyte | Analyte            |

mg/L milligrams per litre

µS/cm microsiemens per centimetre

LOR limit of reporting

PS primary sample

Criteria Criteria adopted from Australian and New Zealand Environment and Conservation Council (ANZECC)

Agriculture and Resource Management Council of Australia and New Zealand (ARMCANZ) Australian and

New Zealand Guidelines for Fresh and Marine Water Quality - 'Primary Industries: Water quality for

irrigation and general water use', 2000, and/or

within criteria

criteria exceeded



#### **ANALYTICAL REPORT**





CLIENT DETAILS -

LABORATORY DETAILS

Telephone

Facsimile

Contact Brendan Stuart
Client PREMISE

Address LEVEL 1

100 BRUNSWICK STREET

FORTITUDE VALLEY

QLD 4006

Telephone 61 2 6939 5000 Facsimile (Not specified)

Email Brendan.stuart@premise.com.au

Project 217501 - Portland GD

Order Number 217501 Samples 6 Manager Shane McDermott

Laboratory SGS Alexandria Environmental

Address Unit 16, 33 Maddox St

Alexandria NSW 2015

+61 2 8594 0400 +61 2 8594 0499

Email au.environmental.sydney@sgs.com

SGS Reference SE276893 R0
Date Received 17/1/2025

Date Reported 28/1/2025

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

Anions Ion Chromatography - The Limit of Reporting (LOR) has been raised due to high conductivity of the sample requiring dilution.

SIGNATORIES

Akheeqar BENIAMEEN

Chemist

Dong LIANG

Metals/Inorganics Team Leader

Ly Kim HA

Organic Section Head

Kmln L

уэмцуэмц гивти

Ying Ying ZHANG

Laboratory Technician





#### OC Pesticides in Water [AN420] Tested: 20/1/2025

|                         |      |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|-------------------------|------|-----|--------------|--------------|--------------|--------------|--------------|
|                         |      |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|                         |      |     |              | -            |              |              |              |
|                         |      |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER               | UOM  | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Hexachlorobenzene (HCB) | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha BHC               | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Lindane (gamma BHC)     | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Heptachlor              | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Aldrin                  | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Beta BHC                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Delta BHC               | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Heptachlor epoxide      | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| o,p'-DDE                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha Endosulfan        | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Gamma Chlordane         | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Alpha Chlordane         | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| trans-Nonachlor         | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| p,p'-DDE                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Dieldrin                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endrin                  | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| o,p'-DDD                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| o,p'-DDT                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Beta Endosulfan         | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| p,p'-DDD                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| p,p'-DDT                | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endosulfan sulphate     | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endrin aldehyde         | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Methoxychlor            | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Endrin ketone           | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Isodrin                 | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| Mirex                   | μg/L | 0.1 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |
| <u> </u>                |      |     |              | 1            | 1            | 1            |              |

28/01/2025 Page 2 of 14



#### OC Pesticides in Water [AN420] Tested: 20/1/2025 (continued)

|                         |      |     | MP-9                    |
|-------------------------|------|-----|-------------------------|
|                         |      |     | WATER<br>-<br>15/1/2025 |
| PARAMETER               | UOM  | LOR | SE276893.006            |
| Hexachlorobenzene (HCB) | μg/L | 0.1 | <0.1                    |
| Alpha BHC               | μg/L | 0.1 | <0.1                    |
| Lindane (gamma BHC)     | μg/L | 0.1 | <0.1                    |
| Heptachlor              | μg/L | 0.1 | <0.1                    |
| Aldrin                  | μg/L | 0.1 | <0.1                    |
| Beta BHC                | μg/L | 0.1 | <0.1                    |
| Delta BHC               | μg/L | 0.1 | <0.1                    |
| Heptachlor epoxide      | μg/L | 0.1 | <0.1                    |
| o,p'-DDE                | μg/L | 0.1 | <0.1                    |
| Alpha Endosulfan        | μg/L | 0.1 | <0.1                    |
| Gamma Chlordane         | μg/L | 0.1 | <0.1                    |
| Alpha Chlordane         | μg/L | 0.1 | <0.1                    |
| trans-Nonachlor         | μg/L | 0.1 | <0.1                    |
| p,p'-DDE                | μg/L | 0.1 | <0.1                    |
| Dieldrin                | μg/L | 0.1 | <0.1                    |
| Endrin                  | μg/L | 0.1 | <0.1                    |
| o,p'-DDD                | μg/L | 0.1 | <0.1                    |
| o,p'-DDT                | μg/L | 0.1 | <0.1                    |
| Beta Endosulfan         | μg/L | 0.1 | <0.1                    |
| p,p'-DDD                | μg/L | 0.1 | <0.1                    |
| p,p'-DDT                | μg/L | 0.1 | <0.1                    |
| Endosulfan sulphate     | μg/L | 0.1 | <0.1                    |
| Endrin aldehyde         | μg/L | 0.1 | <0.1                    |
| Methoxychlor            | μg/L | 0.1 | <0.1                    |
| Endrin ketone           | μg/L | 0.1 | <0.1                    |
| Isodrin                 | μg/L | 0.1 | <0.1                    |
| Mirex                   | μg/L | 0.1 | <0.1                    |

28/01/2025 Page 3 of 14



SE276893 R0

#### Total Phenolics in Water [AN295] Tested: 21/1/2025

|               |      |      | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|---------------|------|------|--------------|--------------|--------------|--------------|--------------|
|               |      |      | WATER        | WATER        | WATER        | WATER        | WATER        |
|               |      |      |              |              |              |              | -            |
|               |      |      | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER     | UOM  | LOR  | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Total Phenols | mg/L | 0.05 | <0.05        | <0.05        | <0.05        | <0.05        | <0.05        |

|               |      |      | MP-9           |
|---------------|------|------|----------------|
|               |      |      | WATER          |
|               |      |      | -<br>15/1/2025 |
| PARAMETER     | иом  | LOR  | SE276893.006   |
| Total Phenols | mg/L | 0.05 | <0.05          |

28/01/2025 Page 4 of 14





#### Anions by Ion Chromatography in Water [AN245] Tested: 21/1/2025

|                         |      |       | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|-------------------------|------|-------|--------------|--------------|--------------|--------------|--------------|
|                         |      |       | WATER        | WATER        | WATER        | WATER        | WATER        |
|                         |      |       |              |              |              |              | -            |
|                         |      |       | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER               | UOM  | LOR   | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Nitrate Nitrogen, NO3-N | mg/L | 0.005 | <0.005       | 8.9          | 130          | <0.005       | <0.005       |
| Chloride                | mg/L | 1     | 81           | 89           | 470          | 120          | 290          |
| Sulfate, SO4            | mg/L | 1     | 310          | 160          | 640          | 760          | 1100         |
| Fluoride                | mg/L | 0.1   | <0.10        | 0.33         | 0.70         | 0.24         | <0.10        |

|                         |      |       | MP-9         |
|-------------------------|------|-------|--------------|
|                         |      |       | WATER<br>-   |
|                         |      |       | 15/1/2025    |
| PARAMETER               | UOM  | LOR   | SE276893.006 |
| Nitrate Nitrogen, NO3-N | mg/L | 0.005 | <0.025↑      |
| Chloride                | mg/L | 1     | 320          |
| Sulfate, SO4            | mg/L | 1     | 1300         |
| Fluoride                | mg/L | 0.1   | <0.10        |

28/01/2025 Page 5 of 14



SE276893 R0

#### Ammonia Nitrogen by Discrete Analyser [AN291] Tested: 17/1/2025

|                            |      |      | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|----------------------------|------|------|--------------|--------------|--------------|--------------|--------------|
|                            |      |      | WATER        | WATER        | WATER        | WATER        | WATER        |
|                            |      |      |              |              |              |              | -            |
|                            |      |      | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER                  | UOM  | LOR  | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Ammonia Nitrogen, NH₃ as N | mg/L | 0.01 | 3.2          | 0.04         | 0.04         | 0.10         | 0.04         |

|                            |      |      | MP-9         |
|----------------------------|------|------|--------------|
|                            |      |      | WATER        |
|                            |      |      |              |
|                            |      |      | 15/1/2025    |
| PARAMETER                  | UOM  | LOR  | SE276893.006 |
| Ammonia Nitrogen, NH₃ as N | mg/L | 0.01 | 0.06         |

28/01/2025 Page 6 of 14



SE276893 R0

#### pH in water [AN101] Tested: 17/1/2025

|           |         |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|-----------|---------|-----|--------------|--------------|--------------|--------------|--------------|
|           |         |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|           |         |     |              |              |              |              | -            |
|           |         |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER | UOM     | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| pH**      | No unit | -   | 6.9          | 4.4          | 4.4          | 6.7          | 6.6          |

|           |         |     | MP-9           |
|-----------|---------|-----|----------------|
|           |         |     | WATER          |
|           |         |     | -<br>15/1/2025 |
| PARAMETER | UOM     | LOR | SE276893.006   |
| pH**      | No unit | -   | 6.8            |

28/01/2025 Page 7 of 14



SE276893 R0

#### Conductivity and TDS by Calculation - Water [AN106] Tested: 17/1/2025

|                     |       |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|---------------------|-------|-----|--------------|--------------|--------------|--------------|--------------|
|                     |       |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|                     |       |     |              |              |              |              | -            |
|                     |       |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER           | UOM   | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Conductivity @ 25 C | μS/cm | 2   | 1400         | 660          | 3100         | 2200         | 3000         |

|                     |       |     | MP-9         |
|---------------------|-------|-----|--------------|
|                     |       |     | WATER        |
|                     |       |     | -            |
|                     |       |     | 15/1/2025    |
| PARAMETER           | UOM   | LOR | SE276893.006 |
| Conductivity @ 25 C | μS/cm | 2   | 3400         |

28/01/2025 Page 8 of 14



SE276893 R0

#### Alkalinity [AN135] Tested: 20/1/2025

|                           |      |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|---------------------------|------|-----|--------------|--------------|--------------|--------------|--------------|
|                           |      |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|                           |      |     |              |              |              |              | -            |
|                           |      |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER                 | UOM  | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Total Alkalinity as CaCO3 | mg/L | 5   | 370          | <5           | <5           | 550          | 570          |

|                           |      |     | MP-9         |
|---------------------------|------|-----|--------------|
|                           |      |     | WATER        |
|                           |      |     | -            |
|                           |      |     | 15/1/2025    |
| PARAMETER                 | UOM  | LOR | SE276893.006 |
| Total Alkalinity as CaCO3 | mg/L | 5   | 680          |

28/01/2025 Page 9 of 14



SE276893 R0

#### Forms of Carbon [AN190] Tested: 22/1/2025

|                              |      |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|------------------------------|------|-----|--------------|--------------|--------------|--------------|--------------|
|                              |      |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|                              |      |     |              |              |              |              | -            |
|                              |      |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER                    | UOM  | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Total Organic Carbon as NPOC | mg/L | 0.2 | 59           | 20           | 7.7          | 2.8          | 6.2          |

|                              |      |     | MP-9         |
|------------------------------|------|-----|--------------|
|                              |      |     | WATER        |
|                              |      |     |              |
|                              |      |     | 15/1/2025    |
| PARAMETER                    | UOM  | LOR | SE276893.006 |
| Total Organic Carbon as NPOC | mg/L | 0.2 | 1.6          |

28/01/2025 Page 10 of 14



#### Metals in Water (Dissolved) by ICPOES [AN320] Tested: 21/1/2025

|               |      |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|---------------|------|-----|--------------|--------------|--------------|--------------|--------------|
|               |      |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|               |      |     |              |              |              |              |              |
|               |      |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER     | UOM  | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Calcium, Ca   | mg/L | 0.2 | 140          | 34           | 150          | 310          | 390          |
| Magnesium, Mg | mg/L | 0.1 | 41           | 11           | 120          | 140          | 170          |
| Sodium, Na    | mg/L | 0.5 | 69           | 72           | 370          | 96           | 210          |
| Potassium, K  | mg/L | 0.1 | 130          | 27           | 7.0          | 14           | 9.3          |

|               |      |     | MP-9                    |
|---------------|------|-----|-------------------------|
|               |      |     | WATER<br>-<br>15/1/2025 |
| PARAMETER     | UOM  | LOR | SE276893.006            |
| Calcium, Ca   | mg/L | 0.2 | 410                     |
| Magnesium, Mg | mg/L | 0.1 | 260                     |
| Sodium, Na    | mg/L | 0.5 | 210                     |
| Potassium, K  | mg/L | 0.1 | 6.4                     |

28/01/2025 Page 11 of 14





#### Trace Metals (Dissolved) in Water by ICPMS [AN318] Tested: 21/1/2025

|           |      |     | MP-1         | MP-2         | MP-3         | MP-5         | MP-8         |
|-----------|------|-----|--------------|--------------|--------------|--------------|--------------|
|           |      |     | WATER        | WATER        | WATER        | WATER        | WATER        |
|           |      |     |              |              |              |              | -            |
|           |      |     | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    | 15/1/2025    |
| PARAMETER | UOM  | LOR | SE276893.001 | SE276893.002 | SE276893.003 | SE276893.004 | SE276893.005 |
| Iron      | μg/L | 5   | 76           | 160          | 91           | <5           | <5           |
| Manganese | μg/L | 1   | 310          | 370          | 3900         | 260          | 4000         |

|           |      |     | MP-9         |
|-----------|------|-----|--------------|
|           |      |     | WATER        |
|           |      |     | -            |
|           |      |     | 15/1/2025    |
| PARAMETER | иом  | LOR | SE276893.006 |
| Iron      | μg/L | 5   | <5           |
| Manganese | μg/L | 1   | 950          |

28/01/2025 Page 12 of 14



Calculation

## **METHOD SUMMARY**

SE276893 R0

| METHOD | METHODOLOGY SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AN020  | Unpreserved water sample is filtered through a 0.45µm membrane filter and acidified with nitric acid similar to APHA3030B.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AN101  | pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.                                                                                                                                                                                                                                               |
| AN106  | Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA 2510 B. |
| AN106  | Salinity may be calculated in terms of NaCl from the sample conductivity. This assumes all soluble salts present, measured by the conductivity, are present as NaCl.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AN135  | Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre) and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135                                                                                                                                                                                                                                     |
| AN190  | TOC and DOC in Water: A homogenised micro portion of sample is injected into a heated reaction chamber packed with an oxidative catalyst that converts organic carbon to carbon dioxide. The CO2 is measured using a non-dispersive infrared detector. The process is fully automated in a commercially available analyser. If required a sugar value can be calculated from the TOC result. Reference APHA 5310 B.                                                                                                                                                                   |
| AN190  | Chemical oxygen demand can be calculated/estimated based on the O2/C relation as 2.67*NPOC (TOC). This is an estimate only and the factor will vary with sample matrix so results should be interpreted with caution.                                                                                                                                                                                                                                                                                                                                                                 |
| AN245  | Anions by Ion Chromatography: A water sample is injected into an eluent stream that passes through the ion chromatographic system where the anions of interest ie Br, Cl, NO2, NO3 and SO4 are separated on their relative affinities for the active sites on the column packing material. Changes to the conductivity and the UV-visible absorbance of the eluent enable identification and quantitation of the anions based on their retention time and peak height or area. APHA 4110 B                                                                                            |
| AN291  | Ammonia in solution reacts with hypochlorite ions from Sodium Dichloroisocyanuate, and salicylate in the presence of Sodium Nitroprusside to form indophenol blue and measured at 660 nm by Discrete Analyser.                                                                                                                                                                                                                                                                                                                                                                        |
| AN295  | The water sample or extract of sample is distilled in a phosphoric acid stream. Phenolic compounds in the distillate react with a reagent stream of potassium hexacyanoferrate (III) and 4-Amino-2,3-dimethyl-3-pryazolin-5-one in an alkaline medium to form a coloured complex which is analysed spectrophotometrically onboard a continuous flow analyser.                                                                                                                                                                                                                         |
| AN318  | Determination of elements at trace level in waters by ICP-MS technique,, referenced to USEPA 6020B and USEPA 200.8 (5.4).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AN320  | Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals. This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at 8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy levels. The emitted light is focused onto a diffraction grating where it is separated into components.                                                                                                                                           |
| AN320  | Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly proportional to concentration. Corrections are required to compensate for spectral overlap between elements . Reference APHA 3120 B.                                                                                                                                                                                                                                                                                                                             |
| AN420  | SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).                                                                                                                                                                                                                                                                                               |

28/01/2025 Page 13 of 14

If TDS is >500mg/L free or total carbon dioxide cannot be reported. APHA4500CO2 D.

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L.



SE276893 R0

#### FOOTNOTES

\* NATA accreditation does not cover the performance of this service.

\*\* Indicative data, theoretical holding

\*\*\* Indicates that both \* and \*\* apply.

time exceeded

Not analysed.NVL Not validated.

IS Insufficient sample for analysis.

LNR Sample listed, but not received.

UOM Unit of Measure.

LOR Limit of Reporting.

↑↓ Raised/lowered Limit of

Reporting.

Unless it is reported that sampling has been performed by SGS, the samples have been analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC and MU criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here: <a href="https://www.sgs.com.au/en-qb/environment-health-and-safety">www.sgs.com.au/en-qb/environment-health-and-safety</a>.

This document is issued by the Company under its General Conditions of Service accessible at <a href="www.sgs.com/en/Terms-and-Conditions.aspx">www.sgs.com/en/Terms-and-Conditions.aspx</a>.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

28/01/2025 Page 14 of 14